Loading...
Search for: abazarpoor--a
0.004 seconds

    Separation of rhenium and molybdenum from molybdenite leach liquor by the solvent extraction method

    , Article Minerals and Metallurgical Processing ; Volume 30, Issue 1 , February , 2013 , Pages 53-58 ; 07479182 (ISSN) Khoshnevisan, A ; Yoozbashizadeh, H ; Mohammadi, M ; Abazarpoor, A ; Maarefvand, M ; Sharif University of Technology
    2013
    Abstract
    Molybdenum resources around the world are mainly associated with porphyry copper ores. Molybdenite (MoS2) is the main Mo mineral that has rhenium in its crystal lattice. This paper investigates the recovery of rhenium and molybdenum from a molybdenite concentrate using a hydrometallurgical treatment method. The molybdenite concentrate is leached with nitric acid and subjected to solvent extraction to recover and separate rhenium and molybdenum from the leached liquor. The effects of pH and the chemicals' concentration on extraction characteristics of Mo and Re are investigated to define the best condition for selective extraction of these metals. The tested leached liquor contained of 8.2... 

    Application of response surface methodology and central composite rotatable design for modeling and optimization of sulfuric and nitric leaching of spent catalyst

    , Article Russian Journal of Non-Ferrous Metals ; Volume 56, Issue 2 , 2015 , Pages 155-164 ; 10678212 (ISSN) Niaki, R ; Abazarpoor, A ; Halali, M ; Maarefvand, M ; Ebrahimi, G ; Sharif University of Technology
    Abstract
    The optimization of leaching parameters for the Ni recovery of the used catalyst was developed using response surface methodology. The relationship between the Ni recoveries, and four main leaching parameters, temperature, acid concentration, leaching time and particle size were presented as empirical model equations. The predicted values of nickel recoveries were found to be in a reasonable agreement with the experimental values, with R2 as correlation factor being 0.9669 and 0.9869 for sulfuric and nitric acids, respectively. The model equations were then optimized using the quadratic programming method to maximize nickel recovery. The optimum conditions were found to be 103.4°C...