Loading...
Search for: abolpour--m
0.125 seconds

    Outage performance in secure cooperative NOMA

    , Article 2019 Iran Workshop on Communication and Information Theory, IWCIT 2019, 24 April 2019 through 25 April 2019 ; 2019 ; 9781728105840 (ISBN) Abolpour, M ; Mirmohseni, M ; Aref, M. R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Enabling cooperation in a NOMA system is a promising approach to improve its performance. In this paper, we study the cooperation in a secure NOMA system, where the legitimate users are distributed uniformly in the network and the eavesdroppers are distributed according to a homogeneous Poisson point process. We consider a cooperative NOMA scheme (two users are paired as strong and weak users) in two phases: 1) Direct transmission phase, in which the base station broadcasts a superposition of the messages, 2) Cooperation phase, in which the strong user acts as a relay to help in forwarding the messages of the weak user. We study the secrecy outage performance in two cases: (i) security of... 

    Reducing conservatism in robust stability analysis of fractional-order-polytopic systems

    , Article ISA Transactions ; Volume 119 , 2022 , Pages 106-117 ; 00190578 (ISSN) Abolpour, R ; Dehghani, M ; Tavazoei, M. S ; Sharif University of Technology
    ISA - Instrumentation, Systems, and Automation Society  2022
    Abstract
    This paper studies the robust stability of the fractional-order (FO) LTI systems with polytopic uncertainty. Generally, the characteristic polynomial of the system dynamic matrix is not an affine function of the uncertain parameters. Consequently, the robust stability of the uncertain system cannot be evaluated by well-known approaches including LMIs or exposed edges theorem. Here, an over-parameterization technique is developed to convert the main characteristic polynomial into a set of local over-parameterized characteristic polynomials (LOPCPs). It is proved that the robust stability of LOPCPs implies the robust stability of the uncertain system. Then, an algorithm is proposed to explore... 

    Secrecy performance of friendly jammer assisted cooperative NOMA systems with internal eavesdroppers

    , Article 31st IEEE Annual International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC 2020, 31 August 2020 through 3 September 2020 ; Volume 2020-August , 2020 Abolpour, M ; Aissa, S ; Mirmohseni, M ; Aref, M. R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    In non-orthogonal multiple access (NOMA) systems, serving multiple users in shared resource blocks can allow untrusted users to overhear the messages of other users. In this context, we study a network consisting of a base station (BS), a near user and a far user, where the latter attempts to overhear the message of the former. The near user is a full-duplex (FD) node that can also act as a relay. Two operating scenarios are considered: 1) friendly jammer (FJ), where the FD node broadcasts noise for degrading the channel between the BS and the far user, while receiving data from the BS; and 2) friendly jammer relay (FJR), where, in addition to degrading the channel between the BS and the far... 

    Biomimetic ultraflexible piezoresistive flow sensor based on graphene nanosheets and PVA hydrogel

    , Article Advanced Materials Technologies ; 2021 ; 2365709X (ISSN) Abolpour Moshizi, S ; Moradi, H ; Wu, S ; Han, Z. J ; Razmjou, A ; Asadnia, M ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    Flow sensors play a critical role in monitoring flow parameters, including rate, velocity, direction, and rotation frequency. In this paper, inspired by biological hair cells in the human vestibular system, an innovative flow sensor is developed based on polyvinyl alcohol (PVA) hydrogel nanocomposites with a maze-like network of vertically grown graphene nanosheets (VGNs). The VGNs/PVA hydrogel absorbs a copious amount of water when immersed in water, making the sensor highly sensitive to tiny stimuli underwater. The sensor demonstrates a high sensitivity (5.755 mV (mm s−1)−1) and extremely low velocity detection (0.022 mm s−1). It also reveals outstanding performance in detecting... 

    Development of ultrasensitive biomimetic auditory hair cells based on piezoresistive hydrogel nanocomposites

    , Article ACS Applied Materials and Interfaces ; Volume 13, Issue 37 , 2021 , Pages 44904-44915 ; 19448244 (ISSN) Ahmadi, H ; Moradi, H ; Pastras, C. J ; Abolpour Moshizi, S ; Wu, S ; Asadnia, M ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    With an ageing population, hearing disorders are predicted to rise considerably in the following decades. Thus, developing a new class of artificial auditory system has been highlighted as one of the most exciting research topics for biomedical applications. Herein, a design of a biocompatible piezoresistive-based artificial hair cell sensor is presented consisting of a highly flexible and conductive polyvinyl alcohol (PVA) nanocomposite with vertical graphene nanosheets (VGNs). The bilayer hydrogel sensor demonstrates excellent performance to mimic biological hair cells, responding to acoustic stimuli in the audible range between 60 Hz to 20 kHz. The sensor output demonstrates stable... 

    Biomimetic ultraflexible piezoresistive flow sensor based on graphene nanosheets and PVA hydrogel

    , Article Advanced Materials Technologies ; 2021 ; 2365709X (ISSN) Abolpour Moshizi, S ; Moradi, H ; Wu, S ; Han, Z. J ; Razmjou, A ; Asadnia, M ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    Flow sensors play a critical role in monitoring flow parameters, including rate, velocity, direction, and rotation frequency. In this paper, inspired by biological hair cells in the human vestibular system, an innovative flow sensor is developed based on polyvinyl alcohol (PVA) hydrogel nanocomposites with a maze-like network of vertically grown graphene nanosheets (VGNs). The VGNs/PVA hydrogel absorbs a copious amount of water when immersed in water, making the sensor highly sensitive to tiny stimuli underwater. The sensor demonstrates a high sensitivity (5.755 mV (mm s−1)−1) and extremely low velocity detection (0.022 mm s−1). It also reveals outstanding performance in detecting... 

    Development of ultrasensitive biomimetic auditory hair cells based on piezoresistive hydrogel nanocomposites

    , Article ACS Applied Materials and Interfaces ; Volume 13, Issue 37 , 2021 , Pages 44904-44915 ; 19448244 (ISSN) Ahmadi, H ; Moradi, H ; Pastras, C. J ; Abolpour Moshizi, S ; Wu, S ; Asadnia, M ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    With an ageing population, hearing disorders are predicted to rise considerably in the following decades. Thus, developing a new class of artificial auditory system has been highlighted as one of the most exciting research topics for biomedical applications. Herein, a design of a biocompatible piezoresistive-based artificial hair cell sensor is presented consisting of a highly flexible and conductive polyvinyl alcohol (PVA) nanocomposite with vertical graphene nanosheets (VGNs). The bilayer hydrogel sensor demonstrates excellent performance to mimic biological hair cells, responding to acoustic stimuli in the audible range between 60 Hz to 20 kHz. The sensor output demonstrates stable... 

    Biomimetic ultraflexible piezoresistive flow sensor based on graphene nanosheets and pva hydrogel

    , Article Advanced Materials Technologies ; Volume 7, Issue 1 , 2022 ; 2365709X (ISSN) Abolpour Moshizi, S ; Moradi, H ; Wu, S ; Han, Z. J ; Razmjou, A ; Asadnia, M ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Flow sensors play a critical role in monitoring flow parameters, including rate, velocity, direction, and rotation frequency. In this paper, inspired by biological hair cells in the human vestibular system, an innovative flow sensor is developed based on polyvinyl alcohol (PVA) hydrogel nanocomposites with a maze-like network of vertically grown graphene nanosheets (VGNs). The VGNs/PVA hydrogel absorbs a copious amount of water when immersed in water, making the sensor highly sensitive to tiny stimuli underwater. The sensor demonstrates a high sensitivity (5.755 mV (mm s−1)−1) and extremely low velocity detection (0.022 mm s−1). It also reveals outstanding performance in detecting... 

    3D-Path Simulation and Robust Control of Bevel-Tip Needles in Uncertain Model of Soft Tissues

    , M.Sc. Thesis Sharif University of Technology Abolpour, Roozbeh (Author) ; Sadati, Naser (Supervisor) ; Ranjbar, Ali Mohammad (Co-Supervisor)
    Abstract
    In this thesis, first we simulate the needle penetration in the soft tissues via finite element and adaptive finite elemet methods. Then, we design a proper controller for the model of tissue-needle interaction model considering some uncertain parameters and conditions in the needle-tisuue model. Needle penetration speed into the soft tissue and the applied force to needle are supposed to be the system’s inputs in the model. Deformations of tissue particles are modeled based on the tissue particles’ velocities through a set of equations. To solve these equations, numerical methods are used which are conceptually based on finite element methods. In the control step, the needle’s velocity and... 

    Secure Transmission in Cooperative Non-Orthogonal Multiple Access (NOMA) Systems

    , M.Sc. Thesis Sharif University of Technology Abolpour, Milad (Author) ; Aref, Mohammad Reza (Supervisor) ; Mirmohseni, Mahtab (Co-Supervisor)
    Abstract
    Nowadays, number of the users in wireless networks are increasing due to the high speed data transmission. Increasing number of the users increases the required bandwidth and power resource. Using non-orthogonal multiple access (NOMA) is a promising approach to decrease the significant bandwidth and also the required power of the network. NOMA systems decrease the latency of the users and also improve the spectral efficiency by serving multiple users. As signals are transmitting in wireless networks, the internal and also external eavesdroppers have access to the message of the legitimate users in the networks. Therefore, some sort of secrecy of the messages of the users must be provided.... 

    Probability of missed detection as a criterion for receiver placement in MIMO PCL

    , Article IEEE National Radar Conference - Proceedings, 7 May 2012 through 11 May 2012, Atlanta, GA ; 2012 , Pages 0924-0927 ; 10975659 (ISSN) ; 9781467306584 (ISBN) Majd, M. N ; Chitgarha, M. M ; Radmard, M ; Nayebi, M. M ; Sharif University of Technology
    IEEE  2012
    Abstract
    Using multiple antennas at the transmit and receive sides of a passive radar brings both the benefits of MIMO radar and passive radar. However one of the obstacles arisen in such configuration is the receive antennas placement in proper positions so that the radar performance is improved. Here we just consider the case of positioning one receiver among multiple illuminators of opportunity. Indeed it is a start for the solution of optimizing the geometry of the multiple receivers in a passive radar  

    An efficient method for the ring opening of epoxides with aromatic amines by Sb(III) chloride under microwave irradiation

    , Article Journal of Chemical Research ; Issue 4 , 2008 , Pages 220-221 ; 03082342 (ISSN) Ghazanfari, D ; Hashemi, M. M ; Mottaghi, M. M ; Foroughi, M. M ; Sharif University of Technology
    2008
    Abstract
    SbCl3 supported on montmorillonite K-10 is an efficient catalyst for the ring opening of epoxides with aromatic amines under solvent-free conditions and microwave irradiation to give the corresponding b-amino alcohols in high yields with high regioselectivity  

    Resource allocation for uav-enabled integrated sensing and communication (isac) via multi-objective optimization

    , Article ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings ; Volume 2023-June , 2023 ; 15206149 (ISSN); 978-172816327-7 (ISBN) Rezaei, O ; Naghsh, M. M ; Karbasi, M ; Nayebi, M. M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2023
    Abstract
    In this paper, we consider an integrated sensing and communication (ISAC) system with wireless power transfer (WPT) where an unmanned aerial vehicle (UAV)-based radar serves a group of energy-limited communication users in addition to its sensing functionality. In this architecture, the radar senses the environment in phase 1 (namely sensing phase) and mean-while, the communications users (nodes) harvest and store the energy from the radar transmit signal. The stored energy is then used for information transmission from the nodes to UAV in phase 2, i.e., uplink phase. Performance of the radar system depends on the transmit signal as well as the receive filter; the energy of the transmit... 

    MIMO radar signal design to improve the MIMO ambiguity function via maximizing its peak

    , Article Signal Processing ; Volume 118 , 2016 , Pages 139-152 ; 01651684 (ISSN) Chitgarha, M. M ; Radmard, M ; Nazari Majd, M ; Karbasi, S. M ; Nayebi, M. M ; Sharif University of Technology
    Elsevier  2016
    Abstract
    One of the important obstacles in MIMO (Multiple Input Multiple Output) radars is the issue of designing proper transmit signals. Indeed, the capability of signal design is a significant advantage in MIMO radars, through which, the system can achieve much better performance. Many different aspects of this performance improvement have been considered yet, and the transmit signals have been designed to attain such goal, e.g., getting higher SNR or better detector's performance at the receiver. However, an important tool for evaluating the radar's performance is its ambiguity function. In this paper, we consider the problem of transmit signal design, in order to optimize the ambiguity function... 

    Detection-localization tradeoff in MIMO radars

    , Article Radioengineering ; Volume 26, Issue 2 , 2017 , Pages 581-587 ; 12102512 (ISSN) Nazari Majd, M ; Radmard, M ; Chitgarha, M. M ; Bastani, M. H ; Nayebi, M. M ; Sharif University of Technology
    2017
    Abstract
    Two gains play key roles in recently developed MIMO wireless communication systems: "spatial diversity" gain and "spatial multiplexing" gain. The diversity gain refers to the capability to decrease the error rate of the MIMO channel, while the multiplexing gain implicitly refers to the amount of increase in the capacity of the MIMO channel. It has been shown that there is a fundamental tradeoff between these two types of gains, meaning interplay between increasing reliability (via an increase in the diversity gain) and increasing data rate (via an increase in the multiplexing gain). On the other hand, recently, MIMO radars have attracted much attention for their superior ability to enhance... 

    Antenna placement and power allocation optimization in MIMO detection

    , Article IEEE Transactions on Aerospace and Electronic Systems ; Vol. 50, Issue 2 , April , 2014 , pp. 1468-1478 Radmard, M ; Chitgarha, M. M ; Majd, M. N ; Nayebi, M. M ; Sharif University of Technology
    2014
    Abstract
    It is a well known fact that using multiple antennas at transmit and receive sides improves the detection performance. However, in such multiple-input multiple-output (MIMO) configuration, proper positioning of transmitters and receivers is a big challenge that can have significant influence on the performance of the overall system. In addition, determining the power of each transmitter under a total power constraint is a problem that should be solved in order to enhance the performance and coverage of such a system. In this paper, we design the Neyman-Pearson detector under the Rayleigh scatter model and use it to introduce a criterion for the antenna placement at both transmit and receive... 

    Ambiguity function of MIMO radar with widely separated antennas

    , Article Proceedings International Radar Symposium ; 16 -18 June , 2014 ; ISSN: 21555753 Radmard, M ; Chitgarha, M. M ; Nazari Majd, M ; Nayebi, M. M ; Sharif University of Technology
    2014
    Abstract
    There has been much interest, recently, towards exploiting the Multiple-Input Multiple-Output (MIMO) technique in radar. It is shown that using multiple antennas at transmit and receive sides can improve the performance of the system. However, in order to analyze the system's performance, its ambiguity function, i.e. the ambiguity function of a MIMO radar, is needed to be defined. In this paper, beginning from the information theoretic definitions, we derive such function, specifically for a MIMO radar with widely separated antennas  

    Choosing the position of the receiver in a MISO passive radar system

    , Article European Microwave Week 2012: "Space for Microwaves", EuMW 2012, Conference Proceedings - 9th European Radar Conference, EuRAD 2012 ; 2012 , Pages 318-321 ; 9782874870293 (ISBN) Chitgarha, M. M ; Majd, M. N ; Radmard, M ; Nayebi, M. M ; Sharif University of Technology
    2012
    Abstract
    By combining the two ideas of MIMO (Multiple Input Multiple Output) and PCL (Passive Coherent Location) in radar, one can achieve the advantages of both recently developed techniques simultaneously. While using multiple antennas at the receive side provides a spatial diversity of the object to be detected, using multiple illuminators of opportunity, most importantly, makes the radar covert to the interceptors. One obstacle in such MIMO configuration is choosing the positions of the receive antennas. In this paper, after analyzing the Neyman-Pearson detector for the DVB-T based PCL, we introduce the probability of missed detection as a criterion to place the receive antenna. Here, we only... 

    Adaptive filtering techniques in passive radar

    , Article Proceedings International Radar Symposium, Dresden ; Volume 2 , June , 2013 , Pages 1067-1078 ; 21555753 (ISSN) ; 9783954042234 (ISBN) Chitgarha, M. M ; Radmard, M ; Majd, M. N ; Nayebi, M. M ; Sharif University of Technology
    2013
    Abstract
    One of the most important obstacles in passive radar applications is removing the direct signal from the target channel. Otherwise, week echoes from the targets in the target channel would be ignored due to the limited dynamic range of the system. One of the most effective techniques in this field is using adaptive filters. In this paper various adaptive filters are introduced and their performances are shown and compared  

    Ambiguity function based receiver placement in multi-site radar

    , Article 2016 CIE International Conference on Radar, RADAR 2016, 10 October 2016 through 13 October 2016 ; 2017 ; 9781509048281 (ISBN) Radmard, M ; Chitgarha, M. M ; Nazari Majd, M ; Nayebi, M. M ; Sharif University of Technology
    2017
    Abstract
    It has been shown that using multiple antennas in a radar system improves the performance considerably, since multiple target echoes are received from different aspect angles of the target. In this way, the target detection is improved. However, when using multiple antennas, some problems, such as designing the transmit signals, synchronization, etc. emerge that should be solved. One of such problems is the receiver placement. Receiver placement deals with choosing a proper position for the receive antenna in order to optimize the whole system's performance. In this paper, a receiver placement procedure based on improving the radar ambiguity function is proposed for the case of a multisite...