Loading...
Search for: ahadian--s
0.124 seconds

    Polyphosphate-reduced graphene oxide on Ni foam as a binder free electrode for fabrication of high performance supercapacitor

    , Article Electrochimica Acta ; Volume 296 , 2019 , Pages 130-141 ; 00134686 (ISSN) Talebi, M ; Asen, P ; Shahrokhian, S ; Ahadian, M. M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Polyphosphate reduced graphene oxide on Ni foam (PPO-RGO/NF) is synthesized by varying weight ratios of Na5P3O10 (PO): graphene oxide (GO) with a simple, scalable and low cost method through freeze-drying of the PO-GO/NF followed by thermal treatment of the prepared electrodes. The resulting samples are characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), Brunauer-Emmett-Teller (BET), and raman spectroscopy methods. The results show that the weight ratio of PO:GO, considerably affect the... 

    Synthesis and application of silica aerogel-MWCNT nanocomposites for adsorption of organic pollutants

    , Article Scientia Iranica ; Volume 17, Issue 2 F , 2010 , Pages 122-132 ; 10263098 (ISSN) Bargozin, H ; Amirkhani, L ; Moghaddas, J. S ; Ahadian, M. M ; Sharif University of Technology
    2010
    Abstract
    Silica aerogel-multi wall carbon nanotube composites were synthesized successfully with a waterglass precursor and an ambient pressure drying method. Pure silica aerogels are so fragile that they cannot be used easily. Carbon nanotubes (MWCNT) were used as reinforcements to strengthen the mechanical properties of pure silica aerogels. Results show that inserting small amounts of MWCNT causes silica aerogels to monolith. By addition of MWCNT, monolith nanocomposites were produced with 800 m2/g surface area and a 140° contact angle. Results show that the silica aerogels and reinforced composites have an excellent adsorption property for the removal of organic pollutants from water. The average... 

    Fabrication of porous polyphosphate carbon composite on nickel foam as an efficient binder-less electrode for symmetric capacitive deionization

    , Article Separation and Purification Technology ; Volume 276 , 2021 ; 13835866 (ISSN) Talebi, M ; Mahdi Ahadian, M ; Shahrokhian, S ; Amini, M. K ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    An efficient and commercially available method is introduced for preparation of a binder-free electrode for capacitive deionization (CDI) application. An interconnected porous composite consisting of polyphosphate (PPO), graphene (Gr) and multi-walled carbon nanotube (CNT) is fabricated and assembled on a Ni foam substrate to prepare a binder-free electrode (Ni/PPOGrCNT). The resulting electrodes were characterized using various instrumental techniques such as TEM, SEM, EDS, XRD, FT-IR, Raman, XPS and XRF. Characterization results indicated that a mesoporous PPO structure is formed on a 3D assembly of carbon backbone. Accordingly, the 3-D porous structure facilitates the ion diffusion into... 

    Photocatalytic activity of ZnO nanoparticles prepared via submerged arc discharge method

    , Article Applied Physics A: Materials Science and Processing ; Volume 100, Issue 4 , September , 2010 , Pages 1097-1102 ; 09478396 (ISSN) Ashkarran, A. A ; Iraji Zad, A ; Mahdavi, S. M ; Ahadian, M. M ; Sharif University of Technology
    2010
    Abstract
    ZnO nanostructures were synthesized through arc discharge of zinc electrodes in deionized (DI) water. X-ray diffraction (XRD) analysis of the prepared nanostructures indicates formation of crystalline ZnO of hexagonal lattice structures. Transmission electron microscopy (TEM) images illustrate rod-like as well as semi spherical ZnO nanoparticles with 15-20 nm diameter range, which were formed during the discharge process with 5 A arc current. The average particle size was found to increase with the increasing arc current. X-ray photoelectron spectroscopy (XPS) analysis confirms formation of ZnO at the surface of the nanoparticles. Surface area of the sample prepared at 5 A arc current,... 

    Nonlinear vibrations of microcantilevers subjected to tip-sample interactions: Theory and experiment

    , Article Journal of Applied Physics ; Volume 106, Issue 11 , 2009 ; 00218979 (ISSN) Delnavaz, A ; Mahmoodi, S. N ; Jalili, N ; Ahadian, M. M ; Zohoor, H ; Sharif University of Technology
    2009
    Abstract
    Improvement of microcantilever-based sensors and actuators chiefly depends on their modeling accuracy. Atomic force microscopy (AFM) is the most widespread application of microcantilever beam as a sensor, which is usually influenced by the tip-sample interaction force. Along this line of reasoning, vibration of AFM microcantilever probe is analyzed in this paper, along with analytical and experimental investigation of the influence of the sample interaction force on the microcantilever vibration. Nonlinear integropartial equation of microcantilever vibration subject to the tip-sample interaction is then derived and multiple time scales method is utilized to estimate the tip amplitude while... 

    Design and simulation of an integrated centrifugal microfluidic device for CTCs separation and cell lysis

    , Article Micromachines ; Volume 11, Issue 7 , July , 2020 Nasiri, R ; Shamloo, A ; Akbari, J ; Tebon, P ; Dokmeci, M. R ; Ahadian, S ; Sharif University of Technology
    MDPI AG  2020
    Abstract
    Separation of circulating tumor cells (CTCs) from blood samples and subsequent DNA extraction from these cells play a crucial role in cancer research and drug discovery. Microfluidics is a versatile technology that has been applied to create niche solutions to biomedical applications, such as cell separation and mixing, droplet generation, bioprinting, and organs on a chip. Centrifugal microfluidic biochips created on compact disks show great potential in processing biological samples for point of care diagnostics. This study investigates the design and numerical simulation of an integrated microfluidic device, including a cell separation unit for isolating CTCs from a blood sample and a... 

    Synthesis and photocatalytic activity of WO3 nanoparticles prepared by the arc discharge method in deionized water

    , Article Nanotechnology ; Volume 19, Issue 19 , 2008 ; 09574484 (ISSN) Ashkarran, A. A ; Iraji Zad, A ; Ahadian, M. M ; Mahdavi Ardakani, S. A ; Sharif University of Technology
    2008
    Abstract
    In this paper, we discuss the synthesis and characterization of tungsten trioxide nanoparticles prepared by the arc discharge method in deionized (DI) water. The size and morphology of WO3 nanoparticles prepared using different arc currents (25, 35 and 45 A) were studied. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) results indicate that at an arc current of 25 A, the size of the particles is about 30 nm, and this increases to 64 nm by increasing the arc current. This size increase caused a decrease of optical band gap from 2.9 to 2.6 eV. X-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) spectra demonstrate the formation of the WO3 phase.... 

    Structure and composition of the segregated Cu in V 2 O 5 /Cu system

    , Article Applied Surface Science ; Volume 253, Issue 5 , 2006 , Pages 2581-2588 ; 01694332 (ISSN) Ahadian, M. M ; Iraji zad, A ; Sharif University of Technology
    Elsevier  2006
    Abstract
    We have investigated segregation of copper at the surface of V 2 O 5 films deposited onto Cu substrate by employing surface analysis techniques. X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) confirmed that the Cu is segregated at the surface and its chemical state is Cu 2 O. According to secondary ion mass spectroscopy (SIMS) and glow discharge spectroscopy (GDS), the Cu concentration inside the deposited V 2 O 5 layer is low. Ultraviolet photoelectron spectroscopy (UPS) and scanning tunneling spectroscopy (STS) revealed the segregation alters the surface local density of states. Surface analysis of deposited samples in ultra high vacuum (UHV) condition... 

    Facile synthesis of cauliflower-like hydrophobically modified polyacrylamide nanospheres by aerosol-photopolymerization

    , Article European Polymer Journal ; Volume 83 , 2016 , Pages 323-336 ; 00143057 (ISSN) Shaban, M ; Ramazani, S. A. A ; Ahadian, M. M ; Tamsilian, Y ; Weber, A. P ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Amphiphilic copolymers consist of hydrophilic and hydrophobic monomer units have attracted great technological attention recently, owing to their unique properties and their ability to stabilize various interfaces in aqueous systems. This paper presents a novel and facile approach to produce spherical polyacrylamide, polystyrene and hydrophobically modified polyacrylamide (HM-PAM), as one of the most important type of amphiphilic copolymers, using a continuous aerosol-photopolymerization for the first time. To this end, the monomer droplets were generated by an atomizer, then photopolymerization was initiated ‘‘in flight’’ by ultraviolet (UV) irradiation of the aerosol monomer droplets... 

    Hyperthermia of breast cancer tumor using graphene oxide-cobalt ferrite magnetic nanoparticles in mice

    , Article Journal of Drug Delivery Science and Technology ; Volume 65 , 2021 ; 17732247 (ISSN) Hatamie, S ; Balasi, Z. M ; Ahadian, M. M ; Mortezazadeh, T ; Shams, F ; Hosseinzadeh, S ; Sharif University of Technology
    Editions de Sante  2021
    Abstract
    Herein, the graphene oxide (GO)/cobalt ferrite nanoparticles were used to apply the heat treatment on the breast cancer cell line of MCF7. The synthesized nanoparticles were evaluated before in vitro and in vivo studies, using transmission electron microscopy (TEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS), thermal property and relaxivity measurement. The nanoparticles showed a diameter of 5 nm with the ferrimagnetic property. Also, the nanoparticles were well distributed on the GO nanosheets. The related peaks of cobalt ferrite nanoparticles were approved by using XRD and XPS assays. During the in vitro investigations, IC50 with... 

    Curcumin-reduced graphene oxide sheets and their effects on human breast cancer cells

    , Article Materials Science and Engineering C ; Volume 55 , 2015 , Pages 482-489 ; 09284931 (ISSN) Hatamie, S ; Akhavan, O ; Sadrnezhaad, S. K ; Ahadian, M. M ; Shirolkar, M. M ; Wang, H. Q ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Curcumin (as a natural reductant material) was utilized for green reduction and functionalization of chemically exfoliated graphene oxide (GO) sheets. The π-π attachment of the curcumin molecules onto the curcumin-reduced graphene oxide (rGO) sheets was confirmed by Raman and Fourier transform infrared spectroscopies. Zeta potential of the GO sheets decreased from about - 40 mV to - 20 mV, after the green reduction and functionalization. The probable cytotoxicity of the curcumin-rGO sheets was studied through their interactions with two human breast cancer cell lines (MDA-MB-231 and SKBR3 cell lines) and a normal cell line (mouse fibroblast L929 cell line). The curcumin-rGO sheet with... 

    Biocompatibility and hyperthermia efficiency of sonochemically synthesized magnetic nanoparticles

    , Article SPIN ; Volume 9, Issue 2 , 2019 ; 20103247 (ISSN) Talebi, M ; Malaie Balasi, Z ; Ahadian, M. M ; Hatamie, S ; Shahsavari Alavijeh, M. H ; Ghafuri, H ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2019
    Abstract
    Hereby, a sonochemical method for synthesis of pure magnetic Fe3O4Onanoparticles (Fe3O4-NPs) in large scale is being introduced. Synthesis proceeds via simple approach, at room temperature, under sonication, using cheap reagents, green antioxidant-reductant reagent and without using inert gas purge as protective atmosphere condition. During this procedure, hydrogen gas releases continuously as valuable byproduct at the anaerobic step of reaction. Characterizations' results indicate that the final product is pure spherical Fe3O4-NPs, with narrow size distribution and about less than 32nm in mean diameter while more than 99% of particles size were less than 40nm. According to Vibrational... 

    Investigation of Surface Segregation Phenomenon in Thin Films

    , Ph.D. Dissertation Sharif University of Technology Ahadian, Mohammad Mahdi (Author) ; Iraji zad, Azam (Supervisor)
    Abstract
    In this thesis, substrate surface segregation during thin film deposition and also during heat treatment has been investigated. For this purpose, surface segregation of copper substrate has been studied in some thin layer systems and the results revealed that surface segregation is possible in more unexpected situations. Complete studies of Ni/Cu system were investigated in UHV condition and direct measurement of surface energy as the main controlling parameter of surface segregation was done using contact angle measurements. The results indicated that in V2O5/Cu system, surface segregation of the Cu occurred up to oxide thickness of 200 nm. The Cu surface segregation in the electrodeposited... 

    Mechanical properties of graphene cantilever from atomic force microscopy and density functional theory

    , Article Nanotechnology ; Volume 21, Issue 18 , 2010 ; 09574484 (ISSN) Rasuli, R ; Iraji Zad, A ; Ahadian, M. M ; Sharif University of Technology
    2010
    Abstract
    We have studied the mechanical properties of a few-layer graphene cantilever (FLGC) using atomic force microscopy (AFM). The mechanical properties of the suspended FLGC over an open hole have been derived from the AFM data. Force displacement curves using the Derjaguin-Müller-Toporov (DMT) and the massless cantilever beam models yield a Young modulus of Ec ∼ 37, Ea ∼ 0.7TPa and a Hamakar constant of ∼ 3 × 10 -18J. The threshold force to shear the FLGC was determined from a breaking force and modeling. In addition, we studied a graphene nanoribbon (GNR), which is a system similar to the FLGC; using density functional theory (DFT). The in-plane Young's modulus for the GNRs were calculated from... 

    Cu surface segregation in Ni/Cu system

    , Article Vacuum ; Volume 84, Issue 4 , 2009 , Pages 469-473 ; 0042207X (ISSN) Rasuli, R ; Iraji zad, A ; Ahadian, M. M ; Sharif University of Technology
    2009
    Abstract
    We report experimental evidence of Cu surface segregation in Ni/Cu system, during deposition of Ni film onto Cu substrate at room temperature and during heat treatment in vacuum. Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) by Tougaard's analysis results show that surface segregation defeats in competition with increase in Ni thickness and terminates when thickness of Ni increase to more than 4 nm. Surface energy and concentration were calculated using contact angle measurements and the results confirm that segregation reduces the surface energy. Surface segregation during heat treatment at 150-220 °C range as a function of time initially shows linear mass... 

    Carbon black-intercalated reduced graphene oxide electrode with graphene oxide separator for high-performance supercapacitor

    , Article Journal of Nanostructures ; Volume 9, Issue 4 , 2019 , Pages 639-649 ; 22517871 (ISSN) Jeddi, H ; Rasuli, R ; Ahadian, M. M ; Mehrabi, B ; Sharif University of Technology
    University of Kashan  2019
    Abstract
    We present a general study on a high performance supercapacitor based on intercalated reduced graphene oxide with carbon black nanoparticles. Graphene oxide sheets were synthesized by oxidation and exfoliation of natural graphite and were reduced using hydroiodic acid in the presence of carbon black nanoparticles. Graphene paper was fabricated by one-step procedure via simultaneous reducing and drying the aqueous solution of mixed carbon black nanoparticles and graphene oxide on a conductive substrate. Transmission electron microscopy confirmed the intercalation of carbon black nanoparticles into reduced graphene oxide sheets, preventing them from restacking during the fabrication of paper.... 

    Molecular interaction between three-dimensional graphene aerogel and enzyme solution: effect on enzyme structure and function

    , Article Journal of Molecular Liquids ; Volume 265 , 2018 , Pages 565-571 ; 01677322 (ISSN) Ehtesabi, H ; Bagheri, Z ; Eskandari, F ; Ahadian, M. M ; Sharif University of Technology
    2018
    Abstract
    New membrane materials and processes have been extensively developed due to urgent needs for much more economic separation processes. Recently, graphene has been confirmed to be an excellent separation membrane. As there is no support in the obtained three-dimensional (3D) architecture constructed from tubular graphene network, it is possible to take full advantage of the large surface of graphene. In this study 3D graphene aerogels were synthesized by a simple method and modified to adjust hydrophilicity of the samples to achieve high liquid volumetric rate. Modified samples were used for the filtration of the enzymes including amylase, cellulase, lipase and protease. Slightly differently... 

    Thermal desorption of ultrathin silicon oxide layers on Si(111)

    , Article Semiconductor Science and Technology, Bristol, United Kingdom ; Volume 15, Issue 2 , 2000 , Pages 160-163 ; 02681242 (ISSN) Iraji Zad, A ; Taghavinia, N ; Ahadian, M ; Mashaei, A ; Sharif University of Technology
    IOP  2000
    Abstract
    The mechanism of oxide desorption from the surface of Si(111) is studied. Oxide layers formed by different chemical treatments were thermally removed in a UHV chamber and the removal process was probed by Auger electron spectroscopy. Results show that the oxide formed by HCl desorbs very fast and the desorption rate is initially almost linear in time, while for oxides formed by HNO3, H2SO4 and NH4OH the rate is initially slow, becoming faster at later times. Similarity in AES spectra of different oxides indicates that the difference in the desorption rates of different oxides cannot be attributed to the difference in chemical environment. Linear increase of void coverage with the square of... 

    Study and Preparation of the Modified Nanostructure Carbon Electrode for Capacitive Deionization (CDI) Process

    , Ph.D. Dissertation Sharif University of Technology Talebi, Majid (Author) ; Ahadian, Mohammad Mahdi (Supervisor) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    Nowadays capacitive deionization (CDI) has attracted a lot of attention for water treatment. CDI is an emerging water treatment technology that uses electrophoretic driving forces for desalination of water. During the CDI process, ions are adsorbed onto the surface of electrodes by applying a low voltage electric field (DC<2V). In addition, the regeneration of the electrodes contains desorption of the electrosorbed ions from the surface of the electrodes to the water in the absence of the applied electric field. In the mechanism of CDI, separation and accumulation of ions in the electric field are the main processes and no additional chemicals are required in this technology. Therein,... 

    Characterization of porous poly-silicon as a gas sensor

    , Article Sensors and Actuators, B: Chemical ; Volume 100, Issue 3 , 2004 , Pages 341-346 ; 09254005 (ISSN) Iraji Zad, A ; Rahimi, F ; Chavoshi, M ; Ahadian, M. M ; Sharif University of Technology
    2004
    Abstract
    Porous poly-silicon (PPS) is a cheaper alternative to single crystal porous silicon and is a favorable choice for making gas sensors. In this study, porous poly-silicon samples were prepared using different HF concentrations and the structural and gas-sensing properties were studied. The topography of the surface was investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. The variation of electrical conductivity of the samples in the presence of dry air-diluted acetone, ethanol and methanol showed that for a constant etching current, the sensitivity was highest for samples prepared in 13% HF solution. The structure of the films in the optimum HF...