Loading...
Search for: ahmadizadeh--m
0.005 seconds

    Design of viscous fluid passive structural control systems using pole assignment algorithm

    , Article Structural Control and Health Monitoring ; Vol. 21, issue. 7 , July , 2014 , p. 1084-1099 Zare, A. R ; Ahmadizadeh, M ; Sharif University of Technology
    Abstract
    A methodology is developed for the design of optimum viscous fluid passive energy dissipation systems using pole assignment active control algorithm. In this method, the procedure to assign the new structural poles is slightly modified such that the resulting structural properties (i.e., the optimum locations of system poles) can be achieved merely by modification of structural stiffness and addition of a passive control system. A combination of stiffness reduction and increase of damping is utilized to reduce both acceleration and displacement response. It is shown that the control systems designed using this method provide structural performances slightly better than or close to those of... 

    Iterative implicit integration procedure for hybrid simulation of large nonlinear structures

    , Article Earthquake Engineering and Structural Dynamics ; Volume 40, Issue 9 , October , 2011 , Pages 945-960 ; 00988847 (ISSN) Mosqueda, G ; Ahmadizadeh, M ; Sharif University of Technology
    2011
    Abstract
    A fully implicit iterative integration procedure is presented for local and geographically distributed hybrid simulation of the seismic response of complex structural systems with distributed nonlinear behavior. The purpose of this procedure is to seamlessly incorporate experimental elements in simulations using existing fully implicit integration algorithms designed for pure numerical simulations. The difficulties of implementing implicit integrators in a hybrid simulation are addressed at the element level by introducing a safe iteration strategy and using an efficient procedure for online estimation of the experimental tangent stiffness matrix. In order to avoid physical application of... 

    An investigation of the effects of structural nonlinearity on the seismic performance degradation of active and passive control systems used for supplemental energy dissipation

    , Article JVC/Journal of Vibration and Control ; Volume 22, Issue 16 , 2016 , Pages 3544-3554 ; 10775463 (ISSN) Khansefid, A ; Ahmadizadeh, M ; Sharif University of Technology
    SAGE Publications Inc 
    Abstract
    It is generally accepted that active control systems provide better structural performance when compared to their passive counterparts. On the other hand, the design of active control systems based on linear control theory is highly dependent on the structural properties. For this reason, their performance is expected to be affected more severely by variations in structural properties compared to those of passive systems. These variations can occur due to nonlinear structural behavior, or even before that due to uncertainties in the estimation of these properties and in numerical modeling. The present work is an investigation of the dependency of various control systems used for supplemental... 

    Design of passive viscous fluid control systems for nonlinear structures based on active control

    , Article Journal of Earthquake Engineering ; 2017 , Pages 1-22 ; 13632469 (ISSN) Zare, A. R ; Ahmadizadeh, M ; Sharif University of Technology
    Abstract
    A practical procedure is developed for the design of passive control systems using viscous fluid dampers for nonlinear structures. The design methodology takes advantage of the modification of the damping, strength, and stiffness properties of the structure to achieve the desired relative displacement and absolute acceleration response. For this purpose, a study of poles in the complex plane is used to determine the required changes in the dynamic properties of nonlinear structures. Furthermore, a relatively simple relation between the ductility demands of highly damped single- and multiple-degree-of-freedom (SDF and MDF respectively) systems is established to reduce the computational burden... 

    Modified sliding mode design of passive viscous fluid control systems for nonlinear structures

    , Article Engineering Structures ; Volume 162 , 1 May , 2018 , Pages 245-256 ; 01410296 (ISSN) Zare, A. R ; Ahmadizadeh, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    A strategy is developed for design of passive control systems for structures experiencing inelastic deformations during earthquake loading. Besides the addition of passive energy dissipation devices, the proposed method suggests the required changes to the stiffness and strength of the structure, to reduce the absolute acceleration and relative deformation responses simultaneously. For this purpose, the locations and amounts of modifications in stiffness, strength and damping are determined by a sliding mode control algorithm to consider the nonlinear behavior of the structure. Being originally designed for active control, the sliding mode algorithm is modified to facilitate the extraction... 

    Design of passive viscous fluid control systems for nonlinear structures based on active control

    , Article Journal of Earthquake Engineering ; Volume 23, Issue 6 , 2019 , Pages 1033-1054 ; 13632469 (ISSN) Zare, A. R ; Ahmadizadeh, M ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    ABSTARCT: A practical procedure is developed for the design of passive control systems using viscous fluid dampers for nonlinear structures. The design methodology takes advantage of the modification of the damping, strength, and stiffness properties of the structure to achieve the desired relative displacement and absolute acceleration response. For this purpose, a study of poles in the complex plane is used to determine the required changes in the dynamic properties of nonlinear structures. Furthermore, a relatively simple relation between the ductility demands of highly damped single- and multiple-degree-of-freedom (SDF and MDF respectively) systems is established to reduce the... 

    A new integration scheme for application to seismic hybrid simulation

    , Article Earthquake Engineering and Engineering Vibration ; Volume 16, Issue 1 , 2017 , Pages 69-81 ; 16713664 (ISSN) Zakersalehi, M ; Tasnimi, A. A ; Ahmadizadeh, M ; Sharif University of Technology
    Institute of Engineering Mechanics (IEM)  2017
    Abstract
    Hybrid simulation is a powerful test method for evaluating the seismic performance of structural systems. This method makes it feasible that only critical components of a structure be experimentally tested. This paper presents a newly proposed integration algorithm for seismic hybrid simulation which is aimed to extend its capabilities to a wide range of systems where existing methods encounter some limitations. In the proposed method, which is termed the variable time step (VTS) integration method, an implicit scheme is employed for hybrid simulation by eliminating the iterative phase on experimental element, the phase which is necessary in regular implicit applications. In order to study... 

    Reliable nonlinear hybrid simulation using modified operator splitting technique

    , Article Structural Control and Health Monitoring ; 2018 ; 15452255 (ISSN) Zakersalehi, M ; Tasnimi, A. A ; Ahmadizadeh, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    One of the main challenges of hybrid simulation is developing integration methods that not only provide accurate and stable results but also are compatible with the hybrid simulation circumstances. This paper presents a novel enhanced integration technique for hybrid simulation termed “modified operator splitting” (MOS) method. The main aim of the MOS technique is to improve the precision of the operator splitting (OS) method by reducing the corrector step length, where initial stiffness is utilized instead of actual stiffness. For this purpose, a new algorithm is proposed, which makes a more precise estimation of the predictor displacement; thus minimizes the effect of the corrective... 

    Reliable nonlinear hybrid simulation using modified operator splitting technique

    , Article Structural Control and Health Monitoring ; Volume 26, Issue 1 , 2019 ; 15452255 (ISSN) Zakersalehi, M ; Tasnimi, A. A ; Ahmadizadeh, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2019
    Abstract
    One of the main challenges of hybrid simulation is developing integration methods that not only provide accurate and stable results but also are compatible with the hybrid simulation circumstances. This paper presents a novel enhanced integration technique for hybrid simulation termed “modified operator splitting” (MOS) method. The main aim of the MOS technique is to improve the precision of the operator splitting (OS) method by reducing the corrector step length, where initial stiffness is utilized instead of actual stiffness. For this purpose, a new algorithm is proposed, which makes a more precise estimation of the predictor displacement; thus minimizes the effect of the corrective... 

    Reliable nonlinear hybrid simulation using modified operator splitting technique

    , Article Structural Control and Health Monitoring ; Volume 26, Issue 1 , 2019 ; 15452255 (ISSN) Zakersalehi, M ; Tasnimi, A. A ; Ahmadizadeh, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2019
    Abstract
    One of the main challenges of hybrid simulation is developing integration methods that not only provide accurate and stable results but also are compatible with the hybrid simulation circumstances. This paper presents a novel enhanced integration technique for hybrid simulation termed “modified operator splitting” (MOS) method. The main aim of the MOS technique is to improve the precision of the operator splitting (OS) method by reducing the corrector step length, where initial stiffness is utilized instead of actual stiffness. For this purpose, a new algorithm is proposed, which makes a more precise estimation of the predictor displacement; thus minimizes the effect of the corrective... 

    Aero-structural design and optimization of a small wind turbine blade

    , Article Renewable Energy ; Volume 87 , 2016 , Pages 837-848 ; 09601481 (ISSN) Pourrajabian, A ; Nazmi Afshar, P. A ; Ahmadizadeh, M ; Wood, D ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    The study develops a methodology for the aero-structural design including consideration of the starting of a small wind turbine blade. To design a fast-starting blade, starting time was combined with output power in an objective function and the blade allowable stress was considered as a constraint. The output power and the starting time were calculated by the blade-element momentum theory and the simple beam theory was employed to compute the stress and deflection along the blade. A genetic algorithm was employed to solve the constrained objective function, finding an optimal blade for which the starting time was small and output power was high while the stress limitation was also met....