Loading...
Search for: aminzare--m
0.006 seconds

    Micro arc oxidation of nano-crystalline Ag-doped TiO2 semiconductors

    , Article Materials Letters ; Volume 65, Issue 5 , March , 2011 , Pages 840-842 ; 0167577X (ISSN) Bayati, M. R ; Aminzare, M ; Molaei, R ; Sadrnezhaad, S. K ; Sharif University of Technology
    2011
    Abstract
    Simple synthesis of silver doped TiO2 nanostructured layers by micro arc oxidation process is reported for the first time. The layers consisted of anatase and rutile phases whose characteristic XRD-peaks shifted toward lower diffraction angles when compared to the pure micro arc oxidized TiO 2 layers. Silver-doping was confirmed by XPS technique. The anatase phase crystalline size was determined as 27.6 and 21.8 nm for the layers grown under the voltages of 350 and 500 V. Employing a UV-Vis spectrophotometer, a red shift in the absorption edge of the layers was observed when silver was incorporated into the titania lattice  

    Effect of high energy ball milling on compressibility and sintering behavior of alumina nanoparticles

    , Article Ceramics International ; Volume 38, Issue 4 , May , 2012 , Pages 2627-2632 ; 02728842 (ISSN) Eskandari, A ; Aminzare, M ; Razavi Hesabi, Z ; Aboutalebi, S. H ; Sadrnezhaad, S. K ; Sharif University of Technology
    2012
    Abstract
    The effect of high-energy ball milling on the textural evolution of alumina nanopowders (compaction response, sinter-ability, grain growth and the degree of agglomeration) during post sintering process is studied. The applied pressure required for the breakage of the agglomerates (P y) during milling was estimated and the key elements of compressibility (i.e. critical pressure (P cr) and compressibility (b)) were calculated. Based on the results, the fracture point of the agglomerates decreased from 150 to 75 MPa with prolonged milling time from 3 to 60 min. Furthermore, the powders were formed by different shaping methods such as cold isostatic press (CIP) and uniaxial press (UP) to better... 

    Densification behavior and mechanical properties of biomimetic apatite nanocrystals

    , Article Current Nanoscience ; Volume 7, Issue 5 , 2011 , Pages 776-780 ; 15734137 (ISSN) Eskandari, A ; Aminzare, M ; Hassani, H ; Barounian, H ; Hesaraki, S ; Sadrnezhaad, S. K ; Sharif University of Technology
    2011
    Abstract
    Nanocrystalline hydroxyapatite (nHA) of 50 nm average diameter and length to diameter ratio of >3 was synthesized by biomimetic method. Non-isothermal sintering improved densification behavior and mechanical properties of apatite to 0.88 maximum fractional density, 70MPa bending strength, 148MPa compressive strength and 2.53GPa microhardness at sintering temperature of 1250°C. Higher sintering temperatures resulted in the decomposition of the apatite and in-situ biphasic calcium phosphate HAP/TCP formation. This process lowered apatite densification and weakened mechanical properties of the sintered specimen. Transmission electron microscopy (TEM), x-ray diffraction (XRD) and field emission...