Loading...
Search for: ashkarran--a--a
0.146 seconds

    Synthesis and photocatalytic activity of WO3 nanoparticles prepared by the arc discharge method in deionized water

    , Article Nanotechnology ; Volume 19, Issue 19 , 2008 ; 09574484 (ISSN) Ashkarran, A. A ; Iraji Zad, A ; Ahadian, M. M ; Mahdavi Ardakani, S. A ; Sharif University of Technology
    2008
    Abstract
    In this paper, we discuss the synthesis and characterization of tungsten trioxide nanoparticles prepared by the arc discharge method in deionized (DI) water. The size and morphology of WO3 nanoparticles prepared using different arc currents (25, 35 and 45 A) were studied. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) results indicate that at an arc current of 25 A, the size of the particles is about 30 nm, and this increases to 64 nm by increasing the arc current. This size increase caused a decrease of optical band gap from 2.9 to 2.6 eV. X-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) spectra demonstrate the formation of the WO3 phase.... 

    ZnO nanoparticles prepared by electrical arc discharge method in water

    , Article Materials Chemistry and Physics ; Volume 118, Issue 1 , 2009 , Pages 6-8 ; 02540584 (ISSN) Ashkarran, A. A ; Iraji zad, A ; Mahdavi, M ; Ahadian, M. M ; Sharif University of Technology
    2009
    Abstract
    We produced ZnO nanoparticles by high current electrical arc discharge of zinc electrodes in deionized (DI) water. X-ray diffraction (XRD) analysis shows formation of crystalline ZnO phase with hexagonal structure and 14 nm single crystalline domain size. Dynamic light scattering (DLS) result indicates that at 5 A arc current, the size of the particles is about 100 nm and increases by increasing the arc current. Absorption spectroscopy of the samples obtained at different arc currents shows an absorption edge on 370 nm which has a red shift by increasing the arc current. Band gap of the produced ZnO nanoparticles at 5 A arc current corresponds to 3.8 eV which decreases to 3.3 eV by... 

    Photocatalytic activity of ZnO nanoparticles prepared via submerged arc discharge method

    , Article Applied Physics A: Materials Science and Processing ; Volume 100, Issue 4 , September , 2010 , Pages 1097-1102 ; 09478396 (ISSN) Ashkarran, A. A ; Iraji Zad, A ; Mahdavi, S. M ; Ahadian, M. M ; Sharif University of Technology
    2010
    Abstract
    ZnO nanostructures were synthesized through arc discharge of zinc electrodes in deionized (DI) water. X-ray diffraction (XRD) analysis of the prepared nanostructures indicates formation of crystalline ZnO of hexagonal lattice structures. Transmission electron microscopy (TEM) images illustrate rod-like as well as semi spherical ZnO nanoparticles with 15-20 nm diameter range, which were formed during the discharge process with 5 A arc current. The average particle size was found to increase with the increasing arc current. X-ray photoelectron spectroscopy (XPS) analysis confirms formation of ZnO at the surface of the nanoparticles. Surface area of the sample prepared at 5 A arc current,... 

    Stability, size and optical properties of colloidal silver nanoparticles prepared by electrical arc discharge in water

    , Article EPJ Applied Physics ; Volume 48, Issue 1 , 2009 , Pages 10601p1-10601p7 ; 12860042 (ISSN) Ashkarran, A. A ; Iraji Zad, A ; Ahadian, M. M ; Hormozi Nezhad, M. R ; Sharif University of Technology
    2009
    Abstract
    We have fabricated and characterised colloidal silver nanoparticles by the electrical arc discharge method in DI water. Size and optical properties of the silver nanoparticles were studied versus different arc currents. Optical absorption indicates a plasmonic peak at 392 nm for 10 A which increases to 398 nm for 20 A arc current. This reveals that by raising the arc current the size of the nanoparticles increases. Optical absorption of silver nanoparticles after 3 weeks shows precipitation of them in a water medium. The effect of different surfactant and stabilizer concentrations such as cethyl trimethylammonium bromide (CTAB), polyvinyl pyrrolidone (PVP), sodium citrate, sodium dodecyl... 

    On the Formation of TiO2 Nanoparticles Via Submerged Arc Discharge Technique: Synthesis, Characterization and Photocatalytic Properties

    , Article Journal of Cluster Science ; Volume 21, Issue 4 , 2010 , Pages 753-766 ; 10407278 (ISSN) Ashkarran, A. A ; Kavianipour, M ; Aghigh, S. M ; Ahmadi Afshar, S. A ; Saviz, S ; Iraji Zad, A ; Sharif University of Technology
    2010
    Abstract
    We report a simple and inexpensive synthesis route of TiO2 nanoparticles using electrical arc discharge between titanium electrodes in oxygen bubbled deionized (DI) water followed by heat treatment. The resulting nanoparticles were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). XRD patterns demonstrate formation of TiO2 phase in oxygen bubbled water after heat treatment and dominance of rutile to anatase phase. The size and morphology of TiO2 nanoparticles were studied using different arc currents as a crucial parameter in properties of final... 

    Rapid and efficient synthesis of colloidal gold nanoparticles by arc discharge method

    , Article Applied Physics A: Materials Science and Processing ; Volume 96, Issue 2 , 2009 , Pages 423-428 ; 09478396 (ISSN) Ashkarran, A. A ; Iraji zad, A ; Mahdavi, M ; Ahadian, M. M ; Hormozi nezhad, M. R ; Sharif University of Technology
    2009
    Abstract
    We report a simple, inexpensive and one-step synthesis route of colloidal gold nanoparticles using arc discharge between titanium electrodes in HAuCl 4 solution achieving long-time stability. Gold nanoparticles of 8 nm diameter were formed during reduction of HAuCl4 in the plasma discharge zone. The resulting nanoparticles were characterized using UV-Vis spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Optical absorption spectroscopy of as prepared samples at 15 A arc current in HAuCl4 solution shows a surface plasmon resonance around 550 nm. It was found that sodium citrate acts as a stabilizer and surface capping agent of the colloidal... 

    Controlling the geometry of silver nanostructures for biological applications

    , Article Physics Procedia, Ancona ; Volume 40 , 2013 , Pages 76-83 ; 18753884 (ISSN) Ashkarran, A. A ; Estakhri, S ; Nezhad, M. R. H ; Eshghi, S ; Sharif University of Technology
    2013
    Abstract
    Noble metals nanostructures, particularly silver, have attracted much attention in the fields of electronics, chemistry, physics, biology and medicine due to their unique properties which are strongly dependent on the size and shape of metal nanomaterials. This study discusses on silver nanostructures with different geometries including wire, cube, sphere and triangle prepared using solution-phase method and applied for antibacterial activities. X-ray diffraction (XRD), Ultra Violet Visible (UV-Vis) spectroscopy, Dynamic Light Scattering (DLS) and electron microscopy studies of different types of silver nanostructures revealed distinct optical and structural properties of an individual... 

    Graphene: Promises, facts, opportunities, and challenges in nanomedicine

    , Article Chemical Reviews ; Volume 113, Issue 5 , 2013 , Pages 3407-3424 ; 00092665 (ISSN) Mao, H. Y ; Laurent, S ; Chen, W ; Akhavan, O ; Imani, M ; Ashkarran, A. A ; Mahmoudi, M ; Sharif University of Technology
    2013
    Abstract
    Graphene, a two-dimensional (2D) sheet of sp2-hybridized carbon atoms packed into a honeycomb lattice, has led to an explosion of interest in the field of materials science, physics, chemistry, and biotechnology since the few-layers graphene (FLG) flakes were isolated from graphite in 2004. For an extended search, derivatives of nanomedicine such as biosensing, biomedical, antibacterial, diagnosis, cancer and photothermal therapy, drug delivery, stem cell, tissue engineering, imaging, protein interaction, DNA, RNA, toxicity, and so on were also added. Since carbon nanotubes are normally described as rolled-up cylinders of graphene sheets and the controllable synthesis of nanotubes is well... 

    Conformation- and phosphorylation-dependent electron tunnelling across self-assembled monolayers of tau peptides

    , Article Journal of Colloid and Interface Science ; Volume 606 , 2022 , Pages 2038-2050 ; 00219797 (ISSN) Ashkarran, A. A ; Hosseini, A ; Loloee, R ; Perry, G ; Lee, K. B ; Lund, M ; Ejtehadi, M. R ; Mahmoudi, M ; Sharif University of Technology
    Academic Press Inc  2022
    Abstract
    We report on charge transport across self-assembled monolayers (SAMs) of short tau peptides by probing the electron tunneling rates and quantum mechanical simulation. We measured the electron tunneling rates across SAMs of carboxyl-terminated linker molecules (C6H12O2S) and short cis-tau (CT) and trans-tau (TT) peptides, supported on template-stripped gold (AuTS) bottom electrode, with Eutectic Gallium-Indium (EGaIn)(EGaIn) top electrode. Measurements of the current density across thousands of AuTS/linker/tau//Ga2O3/EGaIn single-molecule junctions show that the tunneling current across CT peptide is one order of magnitude lower than that of TT peptide. Quantum mechanical simulation... 

    Nanoscale characterization of the biomolecular corona by cryo-electron microscopy, cryo-electron tomography, and image simulation

    , Article Nature Communications ; Volume 12, Issue 1 , 2021 ; 20411723 (ISSN) Sheibani, S ; Basu, K ; Farnudi, A ; Ashkarran, A ; Ichikawa, M ; Presley, J. F ; Bui, K. H ; Ejtehadi, M. R ; Vali, H ; Mahmoudi, M ; Sharif University of Technology
    Nature Research  2021
    Abstract
    The biological identity of nanoparticles (NPs) is established by their interactions with a wide range of biomolecules around their surfaces after exposure to biological media. Understanding the true nature of the biomolecular corona (BC) in its native state is, therefore, essential for its safe and efficient application in clinical settings. The fundamental challenge is to visualize the biomolecules within the corona and their relationship/association to the surface of the NPs. Using a synergistic application of cryo-electron microscopy, cryo-electron tomography, and three-dimensional reconstruction, we revealed the unique morphological details of the biomolecules and their... 

    Determination of nanoparticles using UV-Vis spectra

    , Article Nanoscale ; Volume 7, Issue 12 , Feb , 2015 , Pages 5134-5139 ; 20403364 (ISSN) Behzadi, S ; Ghasemi, F ; Ghalkhani, M ; Ashkarran, A. A ; Akbari, S. M ; Pakpour, S ; Hormozi Nezhad, M. R ; Jamshidi, Z ; Mirsadeghi, S ; Dinarvand, R ; Atyabi, F ; Mahmoudi, M ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    Nanoparticles (NPs) are increasingly being used in different branches of science and in industrial applications; however, their rapid detection and characterization at low concentration levels have remained a challenge; more specifically, there is no single technique that can characterize the physicochemical properties of NPs (e.g. composition and size). In this work we have developed a colorimetric sensor array for defining the physicochemical properties of NPs in aqueous solution with ultra-low concentrations (e.g. 10-7g ml-1 for gold NPs). Various NPs were readily identified using a standard chemometric approach (i.e. hierarchical clustering analysis), with no misclassifications over 400... 

    Synthesis of Nanoparticles by Electrical Arc Discharge in Liquid Media and Characterization

    , Ph.D. Dissertation Sharif University of Technology Ashkarran, Ali Akbar (Author) ; Iraji Zad, Azam (Supervisor) ; Mahdavi, Mohammad (Supervisor)
    Abstract
    In this research we focus on synthesis and analysis of metal and metal oxide nanoparticles and their photocatalytic activity. At the beginning a high current DC power supply and a reactor for the electrical arc discharge process designed and implemented. Several nanoparticles such as tungsten oxide, zinc oxide, silver and gold have synthesized by this method in deionized water, deionized water including surfactants and stabilizers and analyzed. Several characterization techniques such as X-ray diffraction (XRD), dynamic light scattering (DLS) X-ray photoelectron spectroscopy (XPS), BET, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-Vis spectroscopy have... 

    Intelligent semi-active vibration control of eleven degrees of freedom suspension system using magnetorheological dampers

    , Article Journal of Mechanical Science and Technology ; Volume 26, Issue 2 , 2012 , Pages 323-334 ; 1738494X (ISSN) Zareh, S. H ; Sarrafan, A ; Khayyat, A. A. A ; Zabihollah, A ; Sharif University of Technology
    2012
    Abstract
    A novel intelligent semi-active control system for an eleven degrees of freedom passenger car's suspension system using magnetorheological (MR) damper with neuro-fuzzy (NF) control strategy to enhance desired suspension performance is proposed. In comparison with earlier studies, an improvement in problem modeling is made. The proposed method consists of two parts: a fuzzy control strategy to establish an efficient controller to improve ride comfort and road handling (RCH) and an inverse mapping model to estimate the force needed for a semi-active damper. The fuzzy logic rules are extracted based on Sugeno inference engine. The inverse mapping model is based on an artificial neural network... 

    Performance and exhaust emission characteristics of a spark ignition engine operated with gasoline and CNG blend

    , Article Proceedings of the Spring Technical Conference of the ASME Internal Combustion Engine Division ; 2012 , Pages 179-187 ; 15296598 (ISSN) ; 9780791844663 (ISBN) Dashti, M ; Hamidi, A. A ; Mozafari, A. A ; Sharif University of Technology
    2012
    Abstract
    Using CNG as an additive for gasoline is a proper choice due to higher octane number of CNG enriched gasoline with respect to that of gasoline. As a result, it is possible to use gasoline with lower octane number in the engine. This would also mean the increase of compression ratio in SI engines resulting in higher performance and lower gasoline consumption. Over the years, the use of simulation codes to model the thermodynamic cycle of an internal combustion engine have developed tools for more efficient engine designs and fuel combustion. In this study, a thermodynamic cycle simulation of a conventional four-stroke spark-ignition engine has been developed. The model is used to study the... 

    A comparative study of the performance of a SI engine fuelled by natural gas as alternative fuel by thermodynamic simulation

    , Article 2009 ASME Internal Combustion Engine Division Fall Technical Conference, ICEF 2009, Lucerne, 27 September 2009 through 30 September 2009 ; 2009 , Pages 49-57 ; 9780791843635 (ISBN) Dashti, M ; Hamidi, A. A ; Mozafari, A. A ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2009
    Abstract
    With the declining energy resources and increase of pollutant emissions, a great deal of efforts has been focused on the development of alternatives for fossil fuels. One of the promising alternative fuels to gasoline in the internal combustion engine is natural gas [1-5]. The application of natural gas in current internal combustion engines is realistic due to its many benefits. The higher thermal efficiency due to the higher octane value and lower exhaust emissions including CO2 as a result of the lower carbon to hydrogen ratio of the fuel are the two important feature of using CNG as an alternative fuel. It is well known that computer simulation codes are valuable economically as a cost... 

    Analytical and experimental analyses of nonlinear vibrations in a rotary inverted pendulum

    , Article Nonlinear Dynamics ; Volume 107, Issue 3 , 2022 , Pages 1887-1902 ; 0924090X (ISSN) Dolatabad, M.R ; Pasharavesh, A ; Khayyat, A. A. A ; Sharif University of Technology
    Springer Science and Business Media B.V  2022
    Abstract
    Gaining insight into possible vibratory responses of dynamical systems around their stable equilibria is an essential step, which must be taken before their design and application. The results of such a study can significantly help prevent instability in closed-loop stabilized systems by avoiding the excitation of the system in the neighborhood of its resonance. This paper investigates nonlinear oscillations of a rotary inverted pendulum (RIP) with a full-state feedback controller. Lagrange’s equations are employed to derive an accurate 2-DoF mathematical model, whose parameter values are extracted by both the measurement and 3D modeling of the real system components. Although the governing... 

    A suction-controlled ring device to measure the coefficient of lateral soil pressure in unsaturated soils

    , Article Geotechnical Testing Journal ; Volume 44, Issue 1 , 2020 Pirjalili, A ; Garakani, A. A ; Golshani, A ; Mirzaii, A ; Sharif University of Technology
    ASTM International  2020
    Abstract
    A suction-controlled ring device has been developed to continuously measure the coefficient of lateral soil pressure in deformable unsaturated soil samples from the at-rest to the active condition under application of increasing vertical pressure and controlled matric suction. The device incorporates a thin aluminum specimen ring equipped with horizontal strain gages for recording the lateral soil strains. In addition, a sensor recording water volume changes is utilized to continuously monitor the degree of saturation of the soil sample during tests. The matric suction within the soil texture is controlled using the axis translation technique. In order to verify the performance of the ring... 

    Gum tragacanth gels as a new supporting matrix for immobilization of whole-cell

    , Article Iranian Journal of Chemistry and Chemical Engineering ; Volume 24, Issue 4 , 2005 , Pages 1-7 ; 10219986 (ISSN) Otady, M ; Vaziri, A ; Seifkordi, A. A ; Kheirolomoom, A ; Sharif University of Technology
    2005
    Abstract
    We introduce a new smooth, non-toxic, biocompatible method for cross-linking of gum tragacanth (GT), a polysaccharide of natural origin, in order to serve as a new supporting matrix for immobilization systems. The modified gum is used as a matrix for the catalysis of the conversion of benzyl penicillin to 6-aminopenicillanic acid (6-APA) by means of Escherichia coli ATCC11105 with penicillin G acylase (PGA) activity. The results show that GT beads can not only serve as a proper matrix for immobilization, but show enhanced hydrolysis rate and stability compared to other immobilization systems used for this reaction. This signifies the potential of GT as a biocompatible matrix for... 

    True Class-E Design For Inductive Coupling Wireless Power Transfer Applications

    , Article 30th International Conference on Electrical Engineering, ICEE 2022, 17 May 2022 through 19 May 2022 ; 2022 , Pages 864-868 ; 9781665480871 (ISBN) Haeri, A. A. R ; Safarian, A ; Fotowat Ahmady, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    The Class-E power amplifier has been widely studied and formulated in the literature. Although the majority of reported inductive coupling wireless power transfer (WPT) systems use a class-E power amplifier for driving the primary coil, still there is a lack of a comprehensive study on class-E circuit dedicated to WPT, providing a set of closed form design equations for proper class-E operation. This paper presents the required design equations needed to design a 'true' class-E circuit for WPT applications. Equations for the series-tuned secondary coil WPT system are presented, as well as two different design procedures for the parallel-tuned secondary coil. The derived equations have been... 

    Crashworthiness determination of side doors and B pillar of a vehicle subjected to pole side impact

    , Article Applied Mechanics and Materials ; Vol. 663, issue , 2014 , p. 552-556 Lilehkoohi, A. H ; Faieza, A. A ; Sahari, B. B ; Nuraini, A. A ; Halali, M ; Sharif University of Technology
    2014
    Abstract
    Pole Side Impact Tes is one out of three crash tests described by Euro NCAP standard for star rating of a vehicle and is required for assessing the Adult Occupant Protection. In this paper the goal is to determine the crashworthiness of side doors and B pillar in a Pole Side Impact Test based on Euro New Car Assessment Program (Euro-NCAP) using computer and simulation method. In this matter, a vehicle model has been prepared and meshed using Hypermesh and CATIA. The velocity of 29 km/h has been assigned to the vehicle which was on top of a cart while the pole has been assigned as a rigid static object based on Euro NCAP requirements specifically. Results show that different amounts of energy...