Loading...
Search for: asoudeh--m
0.005 seconds

    Quantum secret sharing and random hopping: Using single states instead of entanglement

    , Article Physical Review A - Atomic, Molecular, and Optical Physics ; Volume 92, Issue 3 , September , 2015 ; 10502947 (ISSN) Karimipour, V ; Asoudeh, M ; Sharif University of Technology
    American Physical Society  2015
    Abstract
    Quantum secret sharing (QSS) protocols between N players, for sharing classical secrets, either use multipartite entangled states or use sequential manipulation of single d-level states only when d is prime (A. Tavakoli, arXiv:1501.05582). We propose a sequential scheme which is valid for any value of d. In contrast to A. Tavakoli et al. whose efficiency (number of valid rounds) is 1d, the efficiency of our scheme is 12 for any d. This, together with the fact that in the limit d the scheme can be implemented by continuous variable optical states, brings the scheme into the domain of present day technology  

    Entangled states as robust and re-usable carriers of information

    , Article Quantum Information Processing ; Volume 19, Issue 10 , 2020 Emamipanah, S ; Asoudeh, M ; Karimipour, V ; Sharif University of Technology
    Springer  2020
    Abstract
    Entangled states can be used as secure carriers of information much in the same way as carriers are used in classical communications. In such protocols, quantum states are uploaded to the carrier at one end and are downloaded from it in safe form at the other end, leaving the carrier intact and ready for reuse. Furthermore, protocols have been designed for performing quantum state sharing in this way. In this work, we study the robustness of these protocols against two of the most common sources of noise, namely de-phasing and depolarization and show that multiple uses of these carriers do not lead to accumulative errors, rather the error remains constant and under control. © 2020, Springer... 

    Perfect quantum state transfer in two- and three-dimensional structures

    , Article Physical Review A - Atomic, Molecular, and Optical Physics ; Volume 85, Issue 1 , 2012 ; 10502947 (ISSN) Karimipour, V ; Rad, M. S ; Asoudeh, M ; Sharif University of Technology
    Abstract
    We introduce a scheme for perfect state transfer in regular two- and three-dimensional structures. The interactions on the lattices are of the XX spin type with uniform couplings. In two dimensions, the structure is a hexagonal lattice, and in three dimensions, it consists of hexagonal planes joined to each other at arbitrary points. We will show that compared to other schemes, much less control is needed for routing, the algebra of global control is quite simple, and the same kind of control can upload and download qubit states to or from built-in read-write heads