Loading...
Search for: behrouznejad--f
0.006 seconds

    Effect of indium ratio in CuInxGa1-xS2/carbon hole collecting electrode for perovskite solar cells

    , Article Journal of Power Sources ; Volume 475 , 2020 Forouzandeh, M ; Behrouznejad, F ; Ghavaminia, E ; Khosroshahi, R ; Li, X ; Zhan, Y ; Liao, Y ; Ning, Z ; Taghavinia, N ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Perovskite solar cells (PSCs) have excellent photovoltaic properties. There are, however, challenges of materials cost and device stability to be solved before commercializing them. Utilizing low-cost inorganic hole transport materials (HTM) as a replacement for spiro-OMeTAD, and replacing the Au electrode with printable carbon could be important steps in this regard. For this purpose, CuInxGa1-xS2 (x = 1, 0.75, 0.5, 0.25, 0) nanoparticle layers are deposited as inorganic HTMs with carbon composite electrode as the back electrode. Photovoltaic properties of PSCs with CuInxGa1-xS2/Carbon hole collecting electrodes are studied by changing the In ratio in the HTM layer. Results from impedance... 

    Polyvinylcarbazole as an efficient interfacial modifier for low-cost perovskite solar cells with CuInS2/Carbon hole-collecting electrode

    , Article Solar RRL ; Volume 5, Issue 7 , 2021 ; 2367198X (ISSN) Ghavaminia, E ; Behrouznejad, F ; Forouzandeh, M ; Khosroshahi, R ; Darbari, S ; Zhan, Y ; Taghavinia, N ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    Different polymers have been already introduced for passivating the interfacial defects at the interface of perovskite and the organic hole transport material, meanwhile as an environmental barrier in perovskite solar cells (PSCs). Herein, polyvinylcarbazole (PVK) compared to polymethylmethacrylate (PMMA) at the interface of the perovskite (Cs0.05(MA0.83FA0.17)0.95Pb(Br0.17I0.83)3) layer and CuInS2/carbon as a low-cost inorganic hole-collecting electrode are investigated. By suppressing interfacial recombination using PMMA and PVK, saturation current density (in dark current) decreases one order of magnitude from 7.9 × 10−10 to 4.0 × 10−11 mA cm−2 by adding PMMA and two orders of magnitude... 

    Engineering of CIGS nanoparticle inks for colloidal stability, uniform film formation and application as HTL for perovskite solar cells

    , Article Journal of Industrial and Engineering Chemistry ; 2021 ; 1226086X (ISSN) Khosroshahi, R ; Tehrani, N. A ; Forouzandeh, M ; Behrouznejad, F ; Taghavinia, N ; Bagherzadeh, M ; Sharif University of Technology
    Korean Society of Industrial Engineering Chemistry  2021
    Abstract
    In this work, synthesis of CuIn0.75Ga0.25S2 (CIGS) nanoparticles, the formation of stable dispersion, deposition of high-quality films and, fabrication of thin-film Perovskite solar cells are reported. The stability of nanoparticle ink is crucial in the formation of device-quality films. The chalcogenide-based materials are widely used in thin-film solar cells; in particular, Cu(In,Ga)S2 are used as an absorber and hole transporting layer. In the present study, the nanoparticles of about 20 nm size and bandgap of 1.5 eV are synthesized using a heat-up method. A variety of solvents are used as dispersing media and the stability of the inks is evaluated by precise optical monitoring. We... 

    Engineering of CIGS nanoparticle inks for colloidal stability, uniform film formation and application as HTL for perovskite solar cells

    , Article Journal of Industrial and Engineering Chemistry ; Volume 106 , 2022 , Pages 253-261 ; 1226086X (ISSN) Khosroshahi, R ; Tehrani, N. A ; Forouzandeh, M ; Behrouznejad, F ; Taghavinia, N ; Bagherzadeh, M ; Sharif University of Technology
    Korean Society of Industrial Engineering Chemistry  2022
    Abstract
    In this work, synthesis of CuIn0.75Ga0.25S2 (CIGS) nanoparticles, the formation of stable dispersion, deposition of high-quality films and, fabrication of thin-film Perovskite solar cells are reported. The stability of nanoparticle ink is crucial in the formation of device-quality films. The chalcogenide-based materials are widely used in thin-film solar cells; in particular, Cu(In,Ga)S2 are used as an absorber and hole transporting layer. In the present study, the nanoparticles of about 20 nm size and bandgap of 1.5 eV are synthesized using a heat-up method. A variety of solvents are used as dispersing media and the stability of the inks is evaluated by precise optical monitoring. We...