Loading...
Search for: behshad-shafii--mohammad
0.014 seconds

    Experimental Study of Pool Boiling Heat Transfer Enhancement by Presence of Magnetic Particles under the Influence of Magnetic Field

    , M.Sc. Thesis Sharif University of Technology Feizbakhshi, Morteza (Author) ; Behshad Shafii, Mohammad (Supervisor)
    Abstract
    Study on pool boiling heat transfer characteristics of water-based magnetic fluid and distilled water containing micro size particles has performed. Different concentration in each experiment has been studied to investigate the effect of magnetic fluid and micro size particles on boiling heat transfer on horizontal plate heater. The nickel particles was used as micro size particles which is expected to increase thermal performance of water due to high thermal conductivity of nickel. Experimental results showed adding nickel micro size particles to water can deteriorate the boiling heat transfer coefficient. However the amount of deterioration was the same for all concentrations of nickel... 

    Experimental Investigation of Melting of Two Immiscible Phase Change Material

    , M.Sc. Thesis Sharif University of Technology Momeni, Meisam (Author) ; Behshad Shafii, Mohammad (Supervisor)
    Abstract
    Heat transfer associated with phase change occurs in many physical phenomena. One of the ways of thermal energy storage is the use of latent heat phase change. Therefore, it is important to know the thermal performance of phase change material. In this research, the aim is to investigate the process of phase change of a system consists of two immiscible phase change materials and the comparison of this system with a system consists of one phase change material. The experiments with the two materials system is conducted in two ways. In the first state, that is the normal state, denser material is placed in the bottom and in the second state, denser material is placed in the top. Constant heat... 

    Fabrication and Experimental Investigation of Rotary Agnetohydrodynamic Micropump

    , M.Sc. Thesis Sharif University of Technology Esmaily Moghaddam, Mahdi (Author) ; Behshad Shafii, Mohammad (Supervisor)
    Abstract
    Considering the advantages and disadvantages of reported micropumps, we aimed to introduce a novel idea to diminish the disadvantages and promote the advantages of Magnetohydrodynamic (MHD) micropumps. This novel idea operates based on a mercury slug rotation in a circular microchannel. This cyclic motion of the mercury slug which is similar to a piston, push the fluid in the microchannel and pump the flow. However, to bring this idea into the practice, it must be integrated with a specific valve. Fluid has not to go through this specific valve. In contrary, mercury slug has to pass across this valve. These two specifications must be considered during the design process of the valve. On the... 

    Design, Manufacture and Study of a Desalination System with Heat Pipe and PTC

    , M.Sc. Thesis Sharif University of Technology Jafari Mosleh, Hassan (Author) ; Behshad Shafii, Mohammad (Supervisor)
    Abstract
    According to studies on solar stills, there has been designed an industrial solar still with a linear parabolic through collector (PTC) having higher efficiency than similar systems. Linear PTC coupled with heat pipe is very effective for increasing the efficiency of solar still. This system includes a parabolic trough collector functions by focusing the sunlight on a heat pipe and absorption of heat by a heat pipe. To minimize heat loss, heat pipe is embedded in an evacuated tube collector. By absorbing the heat, the working fluid of the heat pipe (ethanol) will be evaporated and due to its reduced density, it moves upwards and attains to the condenser. The external part of the condenser is... 

    Experimental and Theoretical Investigation of Microdroplet Breakup at Asymmetric T Junctions

    , M.Sc. Thesis Sharif University of Technology Samie, Milad (Author) ; Behshad Shafii, Mohammad (Supervisor)
    Abstract
    Symmetric T junctions have been used widely in microfluidics to generate equal-sized microdroplets, which are applicable in drug delivery systems. A newly proposed method for generating unequal-size microdroplets at a T junction is investigated theoretically and experimentally. Asymmetric T junctions with branches of identical lengths and different cross-sections are utilized for this aim. A novel equation for the critical breakup of droplets at asymmetric T junctions and one for determining the breakup point of droplets are developed. A good agreement was observed between the theories (novel and previous) and the experiments  

    Wind Harvesting via Vortex Induced Vibration for Electricity Generation

    , M.Sc. Thesis Sharif University of Technology Moradi Gharghani, Farshad (Author) ; Behshad Shafii, Mohammad (Supervisor) ; Mousavi, Ali (Supervisor)
    Abstract
    There is a need for renewable energy sources to be more feasible. The purpose of this project is to develop a compact device that is able to harvest wind energy and transform it into electrical energy using the concept of vortex shedding. When calibrated correctly, the vortex shedding will induce resonant oscillation. Electricity would be collected from this oscillation using a magnet and coil assembly. This method was proven to work in water, but has not been applied to air currents. Our group designed and built a small-scale prototype to be tested in closed circuit wind tunnel. The wind harvester works at a moderate wind range of 3 to 5 m/s. Data was collected on the amplitude and... 

    Modeling and Experimental Investigation of a solar Hybrid System to Produce Freshwater from Waste Heat of Photovoltaic Module by Using Thermosyphon heat pipes with different Configurations

    , M.Sc. Thesis Sharif University of Technology Hooshmand, Payam (Author) ; Behshad Shafii, Mohammad (Supervisor) ; Roshandel, Ramin (Supervisor)
    Abstract
    With regard to an increasing world population and the constant capacity of water resources, new and valid methods should be implemented to preserve freshwater resources and accordingly produce drinking water. In the present study, a solar hybrid system was studied by experimental and theoretical means to facilitate the transformation of waste heat from photovoltaic module (PV module) into useful heat that can be used in a solar desalination (SD) system for freshwater production purposes. The study aimed to fabricate a SD system by using both PV module and thermosyphon heat pipes (THPs) technologies in a single system. In the modeling section, the goal is to present a comprehensive model... 

    Experimental Investigation of Pulsating Heat Pipe Filled with Nanofluid and Microfluid and Influencing Factors

    , M.Sc. Thesis Sharif University of Technology Haghayegh, Shahab (Author) ; Saidi, Mohammad Hassan (Supervisor) ; Behshad Shafii, Mohammad (Co-Advisor) ; Afshin, Hossein (Co-Advisor)
    Abstract
    Improving efficiency of heat exchangers has always been an important concern for the industry. Pulsating heat pipes are novel and efficient technology in the field of heat transfer. Pulsating heat pipes are widely used in solar water heaters, solar desalination systems, air conditioning systems, cooling of electronical boards, etc. these applications explain the necessity of performing this study in our country. In this research, thermal performance of open loop pulsating heat pipes using two operating fluids (ferrofluid with surfactant and aluminum microfluid) is experimentally investigated. Start-up and steady thermal performance of pulsating heat pipes charged with these two operating...