Loading...
Search for: beygi--m--h--a
0.006 seconds

    Fracture properties of steel fiber reinforced high strength concrete using work of fracture and size effect methods

    , Article Construction and Building Materials ; Volume 142 , 2017 , Pages 482-489 ; 09500618 (ISSN) Kazemi, M. T ; Golsorkhtabar, H ; Beygi, M. H. A ; Gholamitabar, M ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    This paper deals with investigation of fracture behavior of steel fiber reinforced high strength concrete (SFRHSC) and compare it to plain high strength concrete (HSC). Based on an experimental program, a series of three point bending tests were carried out on 54 notched beams, as recommended by RILEM. The fracture parameters were measured by two methods: work of fracture method (WFM) and size effect method (SEM). Then the fracture parameters obtained from these two methods were compared. The results showed that with increase of steel fibers, fracture energy of GF in WFM and Gf in SEM increase but this increase in work of fracture method is more significant. The effective size of the process... 

    A comprehensive investigation into the effect of water to cement ratio and powder content on mechanical properties of self-compacting concrete

    , Article Construction and Building Materials ; Vol. 57 , April , 2014 , pp. 69-80 ; ISSN: 09500618 Nikbin, I. M ; Beygi, M. H. A ; Kazemi, M. T ; Vaseghi Amiri, J ; Rabbanifar, S ; Rahmani, E ; Rahimi, S ; Sharif University of Technology
    Abstract
    Self compacting concrete (SCC), as an innovative construction material in concrete industry, offers a safer and more productive construction process due to favorable rheological performance which is caused by SCC's different mixture composition. This difference may have remarkable influence on the mechanical behavior of SCC as compared to normal vibrated concrete (NVC) in hardened state. Therefore, it is vital to know whether the use of all assumptions and relations that have been formulated for NVC in current design codes are also valid for SCC. Furthermore, this study presents an extensive evaluation and comparison between mechanical properties of SCC using current international codes and... 

    Effect of coarse aggregate volume on fracture behavior of self compacting concrete

    , Article Construction and Building Materials ; Volume 52 , 15 February , 2014 , Pages 137-145 ; ISSN: 09500618 Nikbin, I. M ; Beygi, M. H. A ; Kazemi, M. T ; Vaseghi Amiri, J ; Rahmani, E ; Rabbanifar, S ; Eslami, M ; Sharif University of Technology
    Abstract
    This paper presents the effect of volume of coarse aggregate on fracture characteristics of self- compacting concrete (SCC). Based on an experimental programme, a series of three point bending tests were carried out on 58 notched beams. SCC was prepared with coarse aggregate in varying percentages of 30%, 40%, 50% and 60% (as the percentage of the total aggregate volume). For all mixes, the fracture parameters were analyzed by the work-of- fracture method (WFM) and by the size effect method (SEM) to obtain a suitable correlation between these methods which is used to calibrate fracture numerical models. The results showed that with decrease of volume of coarse aggregate from 60% to 30% in... 

    A comprehensive investigation into the effect of aging and coarse aggregate size and volume on mechanical properties of self-compacting concrete

    , Article Materials and Design ; Vol. 59, issue , 2014 , pp. 199-210 ; ISSN: 10263098 Nikbin, I. M ; Beygi, M. H. A ; Kazemi, M. T ; Vaseghi Amiri, J ; Rahmani, E ; Rabbanifar, S ; Eslami, M ; Sharif University of Technology
    Abstract
    The popularity of self-compacting concrete (SCC), as an innovative construction materials in concrete industry, has increased all over the world in recent decades. SCC offers a safer construction process and durable concrete structure due to its typical fresh concrete behavior which is achieved by SCC's significantly different mixture composition. This modification of mix composition may have significant effect on the hardened mechanical properties of SCC as compared to normal vibrated concrete (NVC). Therefore, it is necessary to know whether the use of all rules and relations that have been formulated for NVC in current design codes based on years of experience are also valid for SCC....