Loading...
Search for: borjalilou--v
0.008 seconds

    Forced and free vibrational analysis of viscoelastic nanotubes conveying fluid subjected to moving load in hygro-thermo-magnetic environments with surface effects

    , Article Archives of Civil and Mechanical Engineering ; Volume 22, Issue 4 , 2022 ; 16449665 (ISSN) Sarparast, H ; Alibeigloo, A ; Borjalilou, V ; Koochakianfard, O ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Forced and free vibrational analyses of viscoelastic nanotubes containing fluid under a moving load in complex environments incorporating surface effects are conducted based on the nonlocal strain gradient theory and the Rayleigh beam model. To model the internal nanoflow, the slip boundary condition is employed. Adopting the Galerkin discretization approach, the reduced-order dynamic model of the system is acquired. Analytical and numerical methods are exploited to determine the dynamic response of the system. The impacts of geometry, scale parameter ratio, Knudsen number, fluid velocity, rotary inertia parameter, viscoelastic parameter, surface residual stress, surface elastic modulus, and... 

    On size-dependent nonlinear free vibration of carbon nanotube-reinforced beams based on the nonlocal elasticity theory: Perturbation technique

    , Article Mechanics Based Design of Structures and Machines ; 2020 Taati, E ; Borjalilou, V ; Fallah, F ; Ahmadian, M. T ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    Based on the first-order shear deformation (FSD) model and nonlocal elasticity theory, the simultaneous effects of shear and small scale on the nonlinear vibration behavior of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) beams are investigated for the first time. To this end, the governing equations of bending and stretching with von Kármán geometric nonlinearity are decoupled into one fourth-order partial differential equation in terms of transverse deflection. A closed-form solution of the nonlinear natural frequency, which can be used in conceptual design and optimization algorithms of FG- CNTRC beams with different boundary conditions, is developed using a hybrid... 

    Generalized thermoelasticity model for thermoelastic damping in asymmetric vibrations of nonlocal tubular shells

    , Article Thin-Walled Structures ; Volume 174 , 2022 ; 02638231 (ISSN) Li, M ; Cai, Y ; Fan, R ; Wang, H ; Borjalilou, V ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The present article intends to provide a size-dependent generalized thermoelasticity model and closed-form solution for thermoelastic damping (TED) in cylindrical nanoshells. With the aim of incorporating size effect within constitutive relations and heat conduction equation, nonlocal elasticity theory and Guyer–Krumhansl (GK) heat conduction model are exploited. Donnell–Mushtari–Vlasov (DMV) equations are also employed to model the cylindrical nanoshell. By adopting asymmetric simple harmonic form for oscillations of nanoshell and merging the motion, compatibility and heat conduction equations, the nonclassical frequency equation is extracted. By solving this eigenvalue problem and... 

    On size-dependent nonlinear free vibration of carbon nanotube-reinforced beams based on the nonlocal elasticity theory: Perturbation technique

    , Article Mechanics Based Design of Structures and Machines ; Volume 50, Issue 6 , 2022 , Pages 2124-2146 ; 15397734 (ISSN) Taati, E ; Borjalilou, V ; Fallah, and, F ; Ahmadian, M. T ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Based on the first-order shear deformation (FSD) model and nonlocal elasticity theory, the simultaneous effects of shear and small scale on the nonlinear vibration behavior of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) beams are investigated for the first time. To this end, the governing equations of bending and stretching with von Kármán geometric nonlinearity are decoupled into one fourth-order partial differential equation in terms of transverse deflection. A closed-form solution of the nonlinear natural frequency, which can be used in conceptual design and optimization algorithms of FG- CNTRC beams with different boundary conditions, is developed using a hybrid... 

    Analytical and parametric analysis of thermoelastic damping in circular cylindrical nanoshells by capturing small-scale effect on both structure and heat conduction

    , Article Archives of Civil and Mechanical Engineering ; Volume 22, Issue 1 , 2022 ; 16449665 (ISSN) Li, M ; Cai, Y ; Bao, L ; Fan, R ; Zhang, H ; Wang, H ; Borjalilou, V ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    This article intends to examine thermoelastic damping (TED) in circular cylindrical nanoshells by considering small-scale effect on both structural and thermal areas. To fulfill this aim, governing equations are extracted with the aid of nonlocal elasticity theory and dual-phase-lag (DPL) heat conduction model. Circular cylindrical shell is also modeled on the basis of Donnell–Mushtari–Vlasov (DMV) equations for thin shells. By inserting asymmetric simple harmonic oscillations of nanoshell into motion, compatibility and heat conduction equations, the size-dependent thermoelastic frequency equation is obtained. By solving this equation and deriving the frequency of nanoshell affected by...