Loading...
Search for: chen--x
0.007 seconds

    Design of conventional and neural network based controllers for a single-shaft gas turbine

    , Article Aircraft Engineering and Aerospace Technology ; Volume 89, Issue 1 , 2017 , Pages 52-65 ; 00022667 (ISSN) Asgari, H ; Jegarkandi, M. F ; Chen, X. Q ; Sainudiin, R ; Sharif University of Technology
    Emerald Group Publishing Ltd  2017
    Abstract
    Purpose - The purpose of this paper is to develop and compare conventional and neural network-based controllers for gas turbines. Design/methodology/approach - Design of two different controllers is considered. These controllers consist of a NARMA-L2 which is an artificial neural network-based nonlinear autoregressive moving average (NARMA) controller with feedback linearization, and a conventional proportional-integrator-derivative (PID) controller for a low-power aero gas turbine. They are briefly described and their parameters are adjusted and tuned in Simulink-MATLAB environment according to the requirement of the gas turbine system and the control objectives. For this purpose, Simulink... 

    Two-level distributed demand-side management using the smart energy hub concept

    , Article 10th International Conference on Applied Energy, ICAE 2018, 22 August 2018 through 25 August 2018 ; Volume 158 , 2019 , Pages 3052-3063 ; 18766102 (ISSN) Sobhani, O ; Sheykhha, S ; Azimi, M. R ; Madlener, R ; Yang H. X ; Li H ; Chen X ; Yan J ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Demand-side management (DSM) and the integration of the energy hub concept as a main part of future energy networks play an essential role in the process of improving the efficiency and reliability of the power grids. In this paper, we consider a smart multi-carrier energy system in which users are equipped with energy storage and conversion devices (i.e., an energy hub). Users intend to reduce their energy payment by shifting energy consumption to off-peak hours and switching between different energy carriers. This system enables both users with shiftable loads and must-run loads to be active in a DSM program. We apply game theory to formulate the energy consumption and conversion for a... 

    N-Type conductive small molecule assisted 23.5% efficient inverted perovskite solar cells

    , Article Advanced Energy Materials ; Volume 12, Issue 34 , 2022 ; 16146832 (ISSN) Cao, Q ; Li, Y ; Zhang, Y ; Zhao, J ; Wang, T ; Yang, B ; Pu, X ; Yang, J ; Chen, H ; Chen, X ; Li, X ; Ghasemi, S ; Salari, H ; Hagfeldt, A ; Li, X ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Because of the compatibility with tandem devices and the ability to be manufactured at low temperatures, inverted perovskite solar cells have generated far-ranging interest for potential commercial applications. However, their efficiency remains inadequate owing to various traps in the perovskite film and the restricted hole blocking ability of the electron transport layer. Thus, in this work, a wide-bandgap n-type semiconductor, 4,6-bis(3,5-di(pyridin-4-yl)phenyl)-2-phenylpyrimidine (B4PyPPM), to modify a perovskite film via an anti-solvent method is introduced. The nitrogen sites of pyrimidine and pyridine rings in B4PyPPM exhibit strong interactions with the undercoordinated lead ions in... 

    Overcome low intrinsic conductivity of Niox through triazinyl modification for highly efficient and stable inverted perovskite solar cells

    , Article Solar RRL ; Volume 6, Issue 9 , 2022 ; 2367198X (ISSN) Yang, J ; Wang, T ; Li, Y ; Pu, X ; Chen, H ; Li, Y ; Yang, B ; Zhang, Y ; Zhao, J ; Cao, Q ; Chen, X ; Ghasemi, S ; Hagfeldt, A ; Li, X ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Nickel oxide (NiOx) is a promising hole transport material in inverted organic-inorganic metal halide perovskite solar cells. However, its low intrinsic conductivity hinders its further improvement in device performance. Here, we employ a trimercapto-s-triazine trisodium salt (TTTS) as a chelating agent of Ni2+ in the NiOx layer to improve its conductivity. Due to the electron-deficient triazine ring, the TTTS complexes with Ni2+ in NiOx via a strong Ni2+-N coordination bond and increases the ratio of Ni3+:Ni2+. The increased Ni3+ concentration adjusts the band structure of NiOx, thus enhancing hole density and mobility, eventually improving the intrinsic conductivity of NiOx. As a result,...