Loading...
Search for: chitsaz--i
0.017 seconds

    Effects of altitude and temperature on the performance and efficiency of turbocharged direct injection gasoline engine

    , Article Journal of Applied Fluid Mechanics ; Volume 12, Issue 6 , 2019 , Pages 1825-1836 ; 17353572 (ISSN) Motahari, S ; Chitsaz, I ; Sharif University of Technology
    Isfahan University of Technology  2019
    Abstract
    Iran is located at the high altitude region and has a diverse four season climate. The temperature difference of two locations at the same time reaches to 50° C. Therefore, the modern direct injection turbocharged engines are highly affected at this condition. This paper deals with the effects of temperature and pressure variations on the engine performance and fuel consumption of turbocharged gasoline direct injection engine. Ford ecoboost is selected for this study and the base experiments are performed at the sea level. At the next step, a comprehensive one-dimensional model of the engine is constructed in GT power and validated with experimental data. Validated model is implemented to... 

    Effects of altitude and temperature on the performance and efficiency of turbocharged direct injection gasoline engine

    , Article Journal of Applied Fluid Mechanics ; Volume 12, Issue 6 , 2019 , Pages 1825-1836 ; 17353572 (ISSN) Motahari, S ; Chitsaz, I ; Sharif University of Technology
    Isfahan University of Technology  2019
    Abstract
    Iran is located at the high altitude region and has a diverse four season climate. The temperature difference of two locations at the same time reaches to 50° C. Therefore, the modern direct injection turbocharged engines are highly affected at this condition. This paper deals with the effects of temperature and pressure variations on the engine performance and fuel consumption of turbocharged gasoline direct injection engine. Ford ecoboost is selected for this study and the base experiments are performed at the sea level. At the next step, a comprehensive one-dimensional model of the engine is constructed in GT power and validated with experimental data. Validated model is implemented to... 

    Thermodynamic modeling of partially stratified charge engine characteristics for hydrogen-methane blends at ultra-lean conditions

    , Article International Journal of Hydrogen Energy ; Volume 38, Issue 25 , August , 2013 , Pages 10640-10647 ; 03603199 (ISSN) Aliramezani, M ; Chitsaz, I ; Mozafari, A. A ; Sharif University of Technology
    2013
    Abstract
    A thermodynamic model considering flame propagation is presented to predict SI engine characteristics for hydrogen-methane blends. The partially charge stratification approach which involves micro direct injection of pure fuel or a fuel-air mixture, to create a rich zone near the spark plug, is proposed as a method to improve engine performance. Presented approach was validated with experimental data for the natural gas at lean condition. The model was generalized to predict the performance of engine for a variety of hydrogen contents in hydrogen-methane blends. Hydrogen molar concentrations of 0%, 15%, 30%, and 45% were used in the simulations. Results showed that partially charge... 

    Waste heat recovery of the turbocharged engine employing vortex tube for improving transient cold start

    , Article Journal of Mechanical Science and Technology ; Volume 36, Issue 2 , 2022 , Pages 1015-1024 ; 1738494X (ISSN) Entezari, S ; Chitsaz, I ; Hanani, S. K ; Monemi, M ; Sharif University of Technology
    Korean Society of Mechanical Engineers  2022
    Abstract
    Most of the vehicle pollutants during emission tests are raised from catalyst inefficiency during cold start. Catalysts usually convert harmful emissions only when their temperature reaches around 250 °C to 350 °C. In this research, the vortex tube is implemented to recover the waste heat energy of exhaust gas during the cold start to improve catalyst heating. The experiments are conducted on the turbocharged direct-injection gasoline engine to extract the boundary conditions of numerical simulations. Numerical simulations are performed to evaluate the effects of different hot exhaust mass fractions on the flow regime and waste heat recovery. The results reveal that the level of turbulence...