Loading...
Search for: dolatshahi--k--m
0.123 seconds

    Out-of-plane strength reduction of unreinforced masonry walls because of in-plane damages

    , Article Earthquake Engineering and Structural Dynamics ; Volume 44, Issue 13 , 2015 , Pages 2157-2176 ; 00988847 (ISSN) Dolatshahi, K. M ; Yekrangnia, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2015
    Abstract
    There are numerous studies on the behavior of Unreinforced Masonry (URM) walls in both in-plane (IP) and out-of-plane (OP) directions; however, few aimed at understanding the simultaneous contribution of these intrinsic responses during earthquakes. Undoubtedly, even a strong URM wall shows weakened capacity in the OP direction because of minor cracks and other damages in the IP direction, and this capacity reduction has not yet been accounted for in seismic codes. In this study, performance of three URM walls is evaluated by several numerical analyses in terms of the OP capacity reduction because of IP displacements and failure modes. Several parameters influencing the OP capacity have been... 

    Numerical study on factors that influence the in-plane drift capacity of unreinforced masonry walls

    , Article Earthquake Engineering and Structural Dynamics ; Volume 47, Issue 6 , 2018 , Pages 1440-1459 ; 00988847 (ISSN) Dolatshahi, K. M ; Nikoukalam, M. T ; Beyer, K ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    Displacement-based assessment procedures require as input reliable estimates of the deformation capacity of all structural elements. For unreinforced masonry (URM) walls, current design codes specify the in-plane deformation capacity as empirical equations of interstory drift. National codes differ with regard to the parameters that are considered in these empirical drift capacity equations, but the inhomogeneity of datasets on URM wall tests renders it difficult to validate the hypotheses with the currently available experimental data. This paper contributes to the future development of such empirical relationships by investigating the sensitivity of the drift capacity to the shear span,... 

    Displacement ratios for structures with material degradation and foundation uplift

    , Article Bulletin of Earthquake Engineering ; Volume 17, Issue 9 , 2019 , Pages 5133-5157 ; 1570761X (ISSN) Dolatshahi, K. M ; Vafaei, A ; Kildashti, K ; Hamidia, M ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    In this paper, combined effects of material degradation, p-delta, and foundation uplift are incorporated in a soil-structure-interaction (SSI) framework to assess seismic response of a single-degree-of-freedom system. The considered phenomenological systems represent a column with a lumped mass on top is placed on a rigid foundation. The foundation is mounted on Winkler springs and dashpots to take account of soil-foundation compliance and material/radiation damping. The springs are tensionless to guarantee that uplift is properly modelled. The model is verified for two specific limit cases with the code and literature to make sure that the model is capable of capturing SSI and foundation... 

    Shake table test of a masonry building retrofitted with shotcrete

    , Article Engineering Structures ; Volume 219 , 2020 Ghezelbash, A ; Beyer, K ; Mohtasham Dolatshahi, K ; Yekrangnia, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    This paper presents the results of a series of shake table tests carried out on a half-scale single-story unreinforced masonry building with asymmetric openings. First, the unretrofitted building is subjected to seven increasing steps of bidirectional seismic excitation. The damaged building is then rehabilitated using steel mesh and shotcrete layer with two walls retrofitted from the exterior face and the other two from the interior face. Afterward, the shake table test is again conducted on the retrofitted specimen in nine increasing excitation levels. Three cases of interior-to-interior, interior-to-exterior, and exterior-to-exterior shotcrete connections are considered at the... 

    Stiffness and strength estimation of damaged unreinforced masonry walls using crack pattern

    , Article Journal of Earthquake Engineering ; Volume 26, Issue 2 , 2022 , Pages 837-856 ; 13632469 (ISSN) Dolatshahi, K. M ; Beyer, K ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    After an earthquake, the residual stiffness and strength of structural elements are typically estimated based on a qualitative visual inspection of cracks that is prone to error. In this paper a new approach is proposed to automatically estimate the updated stiffness and strength of damaged unreinforced masonry walls by characterization of crack patterns by a mathematical index. It is shown that structural and textural fractal dimensions of a crack pattern reflect the extent of cracking and the type of cracking or crushing, i.e., whether the cracks pass through joints or whether bricks have been damaged and crushed. Using results of six quasi-static cyclic tests on unreinforced brick masonry... 

    Peak drift ratio estimation for RC moment frames using multifractal dimensions of surface crack patterns

    , Article Engineering Structures ; Volume 255 , 2022 ; 01410296 (ISSN) Hamidia, M ; Ganjizadeh, A ; Dolatshahi, K. M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this paper, a novel computer-vision based methodology is developed for predicting the seismic peak drift ratio of damaged reinforced concrete moment frames using surface crack patterns. A comprehensive database comprising 974 surface crack images from cyclic test results of 256 beam-column joint specimens at various drift ratio levels is collected. The database covers a broad range of concrete compressive strengths, rebar and stirrup strengths, longitudinal and transverse reinforcement ratios, beam and column length to depth ratios, in-plane configurations, and failure modes. Multifractal dimensions of damaged beam-column subassembly images are obtained by the box-counting algorithm to... 

    Seismic displacement ratios for soil-pile-structure systems allowed to uplift

    , Article Soil Dynamics and Earthquake Engineering ; Volume 155 , 2022 ; 02677261 (ISSN) Hamidia, M ; Vafaei, A ; Dolatshahi, K. M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this paper, the soil-pile-structure interaction effects on seismic displacement demands are investigated using various dimensionless parameters. The code prescribed procedures for estimating seismic displacement demands are built upon fixed-base structure assumption and neglect the effect of foundation uplift. Tensile index, the ratio of the summation of the tensile strength of all piles to the weight of the structure, is introduced as a novel dimensionless ratio for the seismic assessments. The seismic behavior of the structures with a small tensile index is close to the structures with uplift-allowed shallow foundations. Structures with a large tensile index behave like tied foundation... 

    Shear slotted bolted connection

    , Article Structural Design of Tall and Special Buildings ; Volume 26, Issue 3 , 2017 ; 15417794 (ISSN) Nikoukalam, M. T ; Mirghaderi, S. R ; Dolatshahi, K. M ; Sharif University of Technology
    2017
    Abstract
    Slotted bolted connections (SBCs) have been developed and used as an axial friction damper in braced frames since 1980s. To employ the benefits of SBCs in moment resisting frames (MRFs), rotational slotted bolted connections have been developed more recently with limited application in members that flexural behavior is dominated to shear. In this paper, shear slotted bolted connection (SSBC) is introduced as a new type of friction dampers to employ the benefits of SBCs in lateral load resisting systems with predominant shear behavior members that dissipate energy by traditional yielding mechanisms. The SSBC is a modified bolted connection that dissipates energy through friction in which... 

    Collapse risk and earthquake-induced loss assessment of buildings with eccentrically braced frames

    , Article Journal of Constructional Steel Research ; Volume 168 , May , 2020 Moammer, O ; Madani, H. M ; Dolatshahi, K. M ; Ghyabi, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this paper, earthquake-induced economic loss of buildings with the eccentrically braced frame as the lateral load resisting system is investigated. Economic loss in this paper includes collapse loss, demolition loss, and structural and nonstructural repair loss. A simplified probabilistic story-based loss estimation procedure is employed for this purpose. A thorough study is conducted on the verification of shear link response with experimental results as shear link is the main source of nonlinearity in eccentrically braced frames. Nonlinear response history analyses are conducted on four, eight and sixteen story prototype models and engineering demand parameters such as story drift... 

    Bidirectional behavior of unreinforced masonry walls

    , Article Earthquake Engineering and Structural Dynamics ; Vol. 43, Issue 15 , 1 December , 2014 , pp. 2377-2397 ; ISSN: 00988847 Dolatshahi, K. M ; Aref, A. J ; Yekrangnia, M ; Sharif University of Technology
    2014
    Abstract
    Most of the studies related to the modeling of masonry structures have by far investigated either the in-plane (IP) or the out-of-plane (OP) behavior of walls. However, seismic loads mostly impose simultaneous IP and OP demands on load-bearing or shear masonry walls. Thus, there is a need to reconsider design equations of unreinforced masonry walls by taking into account bidirectional effects. The intent of this study is to investigate the bidirectional behavior of an unreinforced masonry wall with a typical aspect ratio under different displacement-controlled loading directions making use of finite element analysis. For this purpose, the numerical procedure is first validated against the... 

    Application of endurance time analysis in seismic evaluation of an unreinforced masonry monument

    , Article Journal of Earthquake Engineering ; Volume 21, Issue 2 , 2017 , Pages 181-202 ; 13632469 (ISSN) Chiniforush, A. A ; Estekanchi, H ; Dolatshahi, K. M ; Sharif University of Technology
    Taylor and Francis Ltd  2017
    Abstract
    In this article, seismic behavior of the main dome of a well-known middle-eastern historical- monument, “Imam Reza Shrine” (Mashhad, Iran) which is located in a high seismic area in Iran is evaluated. This study focuses on the response history analysis using intensifying dynamic excitations in the framework of Endurance Time Method. Endurance Time Analysis gives acceptable results for a wide range of earthquake intensities and considerably reduces the computational demand in comparison to the conventional Time History Analysis and Incremental Dynamic Analysis. The aim of this study is to investigate the applicability and efficiency of Endurance Time Analysis for masonry monuments and to... 

    Arc length method for extracting crack pattern characteristics

    , Article Structural Control and Health Monitoring ; Volume 28, Issue 1 , 2021 ; 15452255 (ISSN) Asjodi, A. H ; Daeizadeh, M. J ; Hamidia, M ; Dolatshahi, K. M ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    Although manual crack inspection has been widely used for structural health monitoring over the last decades, the development of computer vision methods allows continuous monitoring and compensates the human judgment inaccuracy. In this study, an image-based method entitled Arc Length method is introduced for extracting crack pattern characteristics, including crack width and crack length. The method contains two major steps; in the first step, the crack zones are estimated in the whole image. Afterwards, the algorithm finds the start point, follows the crack pattern, and measures the crack features, such as crack width, crack length, and crack pattern angle. The efficiency of the method is... 

    Experimental and numerical investigation of squat submarines hydrodynamic performances

    , Article Ocean Engineering ; Volume 266 , 2022 ; 00298018 (ISSN) Sarraf, S ; Abbaspour, M ; Dolatshahi, K. M ; Sarraf, S ; Sani, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This paper empirically examines the hydrodynamic performances of squat submarines under the resistance and wave tests beside numerical investigation of pressure drag reduction techniques. Despite vast information about the operation of the streamlined fluid vessels, there is not much information about the geometries and hydrodynamic behaviors of squat vessels with L/D ratios below four. This study experimentally investigates the impacts of various relative depths and flow inclinations, intending to find drag, heave, and sway forces at the velocities of 0.5, 1.0, 1.5, 2.0, and 2.5-m/s. A one-tenth scaled model of a squat submarine is examined under the resistance and wave train scenarios as... 

    Experimental investigation of hydrodynamic interaction between a squat submarine operating behind a ship

    , Article Ocean Engineering ; Volume 279 , 2023 ; 00298018 (ISSN) Sarraf, S ; Abbaspour, M ; Dolatshahi, K. M ; Sarraf, S ; Sani, M ; Sharif University of Technology
    Elsevier Ltd  2023
    Abstract
    This article experimentally investigates the hydrodynamic interaction of a squat submarine operating behind a ship in various wave and resistance tests. A 0.625 m long (one-tenth scale) captive model of a squat submarine is constructed along with a 1.5 m Fridsma ship to perform 47 unique experiments in a 4 × 6 × 400 m3 tank located in a towing tank center. The submarine is a new midget-submersible, of Apam-Napat SMSD type, with an L/D ratio below four. Wave and resistance tests are performed for various 2D relative lengths and depths at short-distance conditions. A wave of 0.1 m height and 1.5 m wavelength is used in the wave tests, and different operational velocities of 0.5, 1.0, and 1.5... 

    Hydrodynamic interaction of a squat submarine towed by a marine vessel: Experimental investigation

    , Article Ocean Engineering ; Volume 271 , 2023 ; 00298018 (ISSN) Sarraf, S ; Abbaspour, M ; Dolatshahi, K. M ; Sarraf, S ; Sani, M ; Sharif University of Technology
    Elsevier Ltd  2023
    Abstract
    This research investigates the short-distance hydrodynamic interaction of a squat submarine towed by a marine vessel. A one-tenth scaled captive model of a 0.625-m squat submarine is constructed along with a 1.5-m Fridsma ship to perform 69 unique experiments in a 4 × 6 × 400-m3 water tank located in a towing tank center. The submarine model is a new mini-submersible, Apam-Napat SMSD type, with an L/D ratio below four. The cable is specified, regarding its weight per unit length, using a scaling method introduced in this paper. The submarine-cable-ship system is tested for nine various relative lengths and depths at short-distance conditions. In each case, drag and heave forces are recorded... 

    Inverse vibration technique for structural health monitoring of offshore jacket platforms

    , Article Applied Ocean Research ; Volume 62 , 2017 , Pages 181-198 ; 01411187 (ISSN) Haeri, M. H ; Lotfi, A ; Dolatshahi, K. M ; Golafshani, A. A ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    In this paper a new approach is introduced for structural health monitoring of offshore jacket platforms. The procedure uses the measured ambient vibration responses and the corresponding readable natural frequencies and mode shapes of the structural system. Since offshore platforms are composed of heavy topsides supported by jacket structures, participation of the first mode is dominant in each direction in the response of the structure under field excitations. Moreover, ambient vibrations such as wave loads and boat impacts only excite the first modes of the structure. Therefore, it is difficult to find higher modes and the pertinent frequencies by use of accelerometers data. The... 

    Design, validation, and application of a hybrid shape memory alloy-magnetorheological fluid-based core bracing system under tension and compression

    , Article Structures ; Volume 35 , 2022 , Pages 1151-1161 ; 23520124 (ISSN) Zareie, S ; Hamidia, M ; Zabihollah, A ; Ahmad, R ; Dolatshahi, K. M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Civil infrastructures are vulnerable to catastrophic failures when exceeding the limit loading, requiring a reliable structural control mechanism, such as bracing systems, to enhance the integrity and stability of the structure. Bracing systems improve the performance of the structures by increasing the stiffness/strength of structures, the damping coefficient, and/or the energy absorption capacity. However, the functionality of these bracing systems is not controllable and may be altered after strong seismic events. Recently, the smart bracing systems based on multifunctional materials, particularly the shape memory alloy (SMA) and the magnetorheological fluid (MRF) have been developed. The... 

    Machine learning-based seismic damage assessment of non-ductile RC beam-column joints using visual damage indices of surface crack patterns

    , Article Structures ; Volume 45 , 2022 , Pages 2038-2050 ; 23520124 (ISSN) Hamidia, M ; Mansourdehghan, S ; Asjodi, A. H ; Dolatshahi, K. M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    After a significant earthquake, the updated status of the structural elements is usually determined based on a qualitative visual inspection. Although visual inspection provides a prompt assessment of the damaged elements, the output of this subjective method is influenced by the experience and decision of a trained inspector, which may vary from case to case. In this study, an innovative machine learning-based procedure is developed to automate damage state identification of non-ductile reinforced concrete moment frames (RCMFs) utilizing visual indices of crack patterns of the concrete surface. An extensive database including 264 surface crack patterns is constructed corresponding to 61... 

    Inverse vibration problem for un-damped 3-dimensional multi-story shear building models

    , Article Journal of Sound and Vibration ; Volume 333, Issue 1 , 6 January , 2014 , Pages 99-113 ; ISSN: 0022460X Dolatshahi, K. M ; Rofooei, F. R ; Sharif University of Technology
    2014
    Abstract
    Various researchers have contributed to the identification of the mass and stiffness matrices of two dimensional (2-D) shear building structural models for a given set of vibratory frequencies. The suggested methods are based on the specific characteristics of the Jacobi matrices, i.e., symmetric, tri-diagonal and semi-positive definite matrices. However, in case of three dimensional (3-D) structural models, those methods are no longer applicable, since their stiffness matrices are not tri-diagonal. In this paper the inverse problem for a special class of vibratory structural systems, i.e., 3-D shear building models, is investigated. A practical algorithm is proposed for solving the inverse... 

    Multi-directional response of unreinforced masonry walls: experimental and computational investigations

    , Article Earthquake Engineering and Structural Dynamics ; Volume 45, Issue 9 , 2016 , Pages 1427-1449 ; 00988847 (ISSN) Dolatshahi, K. M ; Aref, A. J ; Sharif University of Technology
    John Wiley and Sons Ltd  2016
    Abstract
    This paper describes the results of an experimental and numerical study that focused on multi-directional behavior of unreinforced masonry walls and established the requisite of the related proposed design equations. The tests were conducted following several sets of multi-directional loading combinations imposed on the top plane of the wall along with considering monotonic and cyclic quasi-static loading protocols. Various boundary conditions, representing possible wall–roof connections, were also considered for different walls to investigate the influence of rotation of the top plane of the wall on the failure modes. The results of the tests were recorded with a host of high precision data...