Loading...
Search for: farahnak-ghazani--m
0.005 seconds

    An experimental platform for macro-scale fluidic medium molecular communication

    , Article IEEE Transactions on Molecular, Biological, and Multi-Scale Communications ; 2020 Khaloopour, L ; Nasiri Kenari, M ; Rouzegar, S. V ; Azizi, A ; Hosseinian, A ; Farahnak Ghazani, M ; Bagheri, N ; Mirmohseni, M ; Arjmandi, H ; Mosayebi, R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    The macro-scale molecular communication (MC) recently received considerable attention because of its potential applications. Since most of the experimental research in MC focuses on the micro-scale cases, it is necessary to study and implement experiments to investigate the concept’s feasibility as well as to validate the models and parameters. In this paper, a macro-scale flow-based MC platform with fluidic medium is developed, in a semi-cylindrical channel with laminar flow condition. The transmission medium we consider is water in the plexi pipe, a transmitter releases Hydrochloric acid molecules into this pipe and a chemical sensor is used as the receiver. We propose an LTI model for the... 

    Bacterial receiver prototype for molecular communication using rhamnose operon in a microfluidic environment

    , Article IEEE Transactions on Nanobioscience ; Volume 20, Issue 4 , 2021 , Pages 426-435 ; 15361241 (ISSN) Amerizadeh, A ; Mashhadian, A ; Farahnak Ghazani, M ; Arjmandi, H. R ; Alsadat Rad, M ; Shamloo, A ; Vosoughi, M ; Nasiri Kenari, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    Bacterial populations are promising candidates for the development of the receiver and transmitter nanomachines for molecular communication (MC). A bacterial receiver is required to uptake the information molecules and produce the detectable molecules following a regulation mechanism. We have constructed a novel bacterial MC receiver using an inducible bacterial L-rhamnose-regulating operon. The proposed bacterial receiver produces green fluorescent protein (GFP) in response to the L-rhamnose information molecules following a quite fast regulation mechanism. To fabricate the receiver, the bacterial population has been transformed using a plasmid harboring L-rhamnose operon genes and gene...