Loading...
Search for: fathipour--m
0.011 seconds

    A comparative study of NEGF and DDMS models in the GAA silicon nanowire transistor

    , Article International Journal of Electronics ; Volume 99, Issue 9 , 2012 , Pages 1299-1307 ; 00207217 (ISSN) Hosseini, R ; Fathipour, M ; Faez, R ; Sharif University of Technology
    Abstract
    In this article, we have used quantum and semiclassical models to analyse the electrical characteristics of gate all around silicon nanowire transistor (GAA SNWT). A quantum mechanical transport approach based on non-equilibrium Green's function (NEGF) method with the use of mode space approach in the frame work of effective mass theory has been employed for this analysis. Semiclassical drift diffusion mode space (DDMS) approach has also been used for the simulation of GAA SNWT. We have studied the short-channel effects on the performance of GAA SNWT and evaluated the variation of the threshold voltage, the subthreshold slope (SS), the leakage current and the drain-induced barrier lowering... 

    Performance evaluation of source heterojunction strained channel gate all around nanowire transistor

    , Article Modern Physics Letters B ; Volume 26, Issue 12 , May , 2012 ; 02179849 (ISSN) Hosseini, R ; Fathipour, M ; Faez, R ; Sharif University of Technology
    2012
    Abstract
    A Gate All Around Nanowire Transistor (GAA NWT) which employs source heterojunction and strained channel is proposed which improves device characteristics. A quantum mechanical transport approach based on nonequilibrium Green's function (NEGF) method in the frame work of effective mass theory is employed in this analysis. We evaluate the variation of the threshold voltage, the subthreshold slope, ON and OFF state currents when channel length decreases. It is shown that the source heterojunction strained channel GAA NWT gives high performance transistors values of the scaled transconductance and ON current that are greater than conventional silicon GAA NWT. Furthermore, comparison of... 

    The effect of structural defects on the electron transport of MoS 2 nanoribbons based on density functional theory

    , Article Journal of Theoretical and Applied Physics ; Volume 13, Issue 1 , 2019 , Pages 55-62 ; 22517227 (ISSN) Zakerian, F ; Fathipour, M ; Faez, R ; Darvish, G ; Sharif University of Technology
    SpringerOpen  2019
    Abstract
    Using non-equilibrium Green’s function method and density functional theory, we study the effect of line structural defects on the electron transport of zigzag molybdenum disulfide (MoS 2 ) nanoribbons. Here, the various types of non-stoichiometric line defects greatly affect the electron conductance of MoS 2 nanoribbons. Although such defects would be lead to the electron scattering, they can increase the transmission of charge carriers by creating new channels. In addition, the presence of S bridge defect in the zigzag MoS 2 nanoribbon leads to more the transmission of charge carriers in comparison with the Mo–Mo bond defect. Also, we find that the different atomic orbitals and their... 

    Near-room-temperature spin caloritronics in a magnetized and defective zigzag MoS2 nanoribbon

    , Article Journal of Computational Electronics ; Volume 19, Issue 1 , 2020 , Pages 137-146 Zakerian, F ; Fathipour, M ; Faez, R ; Darvish, G ; Sharif University of Technology
    Springer  2020
    Abstract
    Using a tight-binding approach and first-principles calculations combined with the nonequilibrium Green’s function method, the thermal spin transport in a zigzag molybdenum disulfide (MoS 2) nanoribbon in the proximity of a ferromagnetic insulator that induces a local exchange magnetic field in the center of the nanoribbon is investigated. It is found that a pure spin current and perfect spin Seebeck effect with zero charge current can be generated by applying a thermal gradient and local exchange magnetic field without a bias voltage near room temperature. Furthermore, it is shown that this nanoscale device can act as a spin Seebeck diode for the control of thermal and spin information in... 

    ZnO-PEDOT core-shell nanowires: An ultrafast, high contrast and transparent electrochromic display

    , Article Solar Energy Materials and Solar Cells ; Volume 145 , 2016 , Pages 200-205 ; 09270248 (ISSN) Kateb, M ; Safarian, S ; Kolahdouz, M ; Fathipour, M ; Ahamdi, V ; Sharif University of Technology
    Elsevier 
    Abstract
    We report fabrication of ultrafast and high contrast transparent electrochromic device desired for display application using nanostructured electrode. To this end, poly (3,4-ethylenedioxythiophene) (PEDOT) nanotubes were synthesized by simple electrochemical polymerization method on hydrothermally grown ZnO nanowires array as electrode. The PEDOT nanotubes of 20 nm average wall thickness characterized by SEM, TEM and EDS. The manufactured cell was subjected to electrochemical test and spectrophotometery that showed high contrast of 54% during ultrafast switching time of <2.2 ms. In addition, high coloration efficiency of 234 cm2/C, ultrahigh diffusion coefficient of 2.01×10-4 cm2/s and... 

    Growth and characterization of sodium-tungsten oxide nanobelts with U-shape cross section

    , Article Journal of Crystal Growth ; Volume 310, Issue 4 , 2008 , Pages 824-828 ; 00220248 (ISSN) Azimirad, R ; Goudarzi, M ; Akhavan, O ; Moshfegh, A. Z ; Fathipour, M ; Sharif University of Technology
    2008
    Abstract
    A simple method for synthesis of Na0.65WO3 nanobelts by using sodium, as a catalyst, in soda-lime glass substrate was reported. The synthesized product was characterized and analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and ultraviolet-visible spectrophotometery. According to SEM observations, nanobelts with U-shape cross section grew between sodium-tungsten oxide islands. The thickness, width, and length of nanobelts were measured <100 nm, between 300 nm-3 μm and 5-20 μm, respectively. In addition, it was observed that some of the nanobelts were constituted from nanowires. Based on XPS analysis, more than 70% of the film...