Loading...
Search for: firoozbakhsh--keikhosrow
0.005 seconds
Total 32 records

    Modeling of the Biomechanical Properties of Articular Cartilage

    , M.Sc. Thesis Sharif University of Technology Naseri, Hossein (Author) ; Firoozbakhsh, Keikhosrow (Supervisor)
    Abstract
    Articular cartilage Function is vital to joint tasks and its motion. The main biomechanical tasks of articular cartilage are a) the distribution of loads occurred in joints; b) providing joints with frictionless surface. The particular mechanical properties of articular cartilage make it possible for the Cartilage tissue to do its duty successfully. The biological factor that causes articular cartilage to damage is still unknown. It is believed that mechanical factors are the main reason for the cartilage destruction in osteoarthritis. Factors like age, heavy exercises and impact can begin tissue destructions and result in change in mechanical properties. To study the process of the... 

    Optimization of Valgus Anatomy Angle of the Fractured Hip for Overcoming the Bone Unhealing Due to Increased Shear Stress at the Fixation Site, Considering Patient Bone Characteristics

    , M.Sc. Thesis Sharif University of Technology Rastegar Talzali, Sajjad (Author) ; Firoozbakhsh, Keikhosrow (Supervisor)
    Abstract
    In femoral neck fracture when the non-union happens in the fractured zone, valgus osteotomy is a surgery method to overcome bone non-union. In this method, a wedge osteotomy-with specific depth and angle- at the femoral neck is created. By changing the bone angle at the fracture site and the angle of the wedge osteotomy it is desired to convert the shear stress to the normal stress. Clinically it is believed that this would facilitate bone healing and prevent bone fracture. This surgery method also changes the anatomy of muscles due to changing hip anatomy, joint reaction force , and it’s direction. This procedure while minimizing shear stress it also reduces the blood supply to the area and... 

    Stress Analysis of LCP and DCP in Normal and Osteoporosis Femur

    , M.Sc. Thesis Sharif University of Technology Esmaeilpour, Mohammad Rasoul (Author) ; Firoozbakhsh, Keikhosrow (Supervisor)
    Abstract

    Metallic implants are often used in the open reduction and internal fixation of fractures. Open reduction and internal fixation are commonly used in cases of trauma when the bone cannot be healed using external methods such as casting. The locking compression plate combines the conventional screw holes, which use non-locking screws, with locking screw holes, which use locking head screws. This allows for more versatility in the application of the plate.
    In the present work, the stress (von-mises) and deformation of a locking compression plate fixed across a transverse fracture (2-mm gap) at the midshaft of femur was evaluated by Ansys software. Femur model is divided to two part... 

    Mechanical Behavior Analysis of Biological Cells Using an Electrostatically Actuated Microbeam

    , M.Sc. Thesis Sharif University of Technology Esmaeilpour Charandabi, Sina (Author) ; Firoozbakhsh, Keikhosrow (Supervisor)
    Abstract
    Researches in last decades have shown that biological cell’s functionality is related to the way of their deformation in response to forces and stresses exerted on the cell. Therefore designing microsensors with easy and economical applicationswhich are capable for determining cell mechanical properties seems to be logical. In this project using an electrostatically actuated microbeam with both clamped ends equipped with an indenter at midpoint to transmit force on the cell, proposed as a technique to apply axial load on the cell. Inthis research by implementation of approximated methods for solving nonlinear algebraic and differential equations, governing on microbeam deflection, it has... 

    Molecular Dynamics Simulation of Actin: An Investigation into the Mechanical Properties

    , M.Sc. Thesis Sharif University of Technology Mehrafrooz, Behzad (Author) ; Shamloo, Amir (Supervisor) ; Firoozbakhsh, Keikhosrow (Supervisor)
    Abstract
    Actin is the most abundant protein in most eukaryotic cells. It is highly conserved and participates in more protein-protein interactions than any known protein. Actin plays a crucial role in cell motility, adhesion, morphology and intracellular transport. Its biologically active form is the filament (F-actin), which is assembled from monomeric G-actin. In this thesis, the mechanical properties and characteristics of both G- and F-actin are studied using molecular dynamics simulations. In general, this thesis can be categorized into two individual parts: First, steered molecular dynamics simulation was performed to assess tension of monomeric G-actin molecule, and stress-strain curves were... 

    Design, Simulation and Fabrication of a Centrifugal Microfluidic Platform for Separation and Studying of Circulating Tumor Cells

    , M.Sc. Thesis Sharif University of Technology Akbari, Ali (Author) ; Shamloo, Amir (Supervisor) ; Firoozbakhsh, Keikhosrow (Supervisor)
    Abstract
    In this project a centrifugal, microfluidic platform to the end of separation and studying circulating tumor cells is designed, modelled and analyzed. Circulating tumor cells (CTCs) are specific types of cancer cells which leave the original tumor and enter the blood stream. For the separation of CTCs, a novel anti-body separation technic has been used which targets the specific MCF7 CTCs using their corresponding Ep-CAM antibody. First the Ep-CAM antibody is coated on magnetic nanoparticles through a chemical bonding process. Afterwards the CTCs are exposed to their antibodies, through which they will bind together and form CTCs with magnetic characteristics. Finally through exerting an... 

    Real Time Simulation of Grasping Procedure of Large Internal Organs during Laparoscopic Surgery

    , M.Sc. Thesis Sharif University of Technology Dehghani Ashkezari, Hossein (Author) ; Farahmand, Farzam (Supervisor) ; Firoozbakhsh, Keikhosrow (Supervisor)
    Abstract
    Surgical simulation systems facilitate a safe and efficient training process by providing a virtual environment in which the trainee can repeat the surgical procedure unlimitedly at different situations. The present study attempted to provide a real time simulation for the grasping procedure of a large internal organ during laparoscopic surgery. A mass-spring-damper model was employed to simulate the nonlinear viscoelastic large deformations of spleen tissue interacting with a triple-jaw large organ grasper. A novel collision detection algorithm was designed and implemented to determine the contact points between the tissue and the grasper jaws. The boundary conditions imposed at the contact... 

    Theoretical and Experimental Simulation of Hepatic Cells and their Functionalities On-a-chip

    , Ph.D. Dissertation Sharif University of Technology Sharifi, Fatemeh (Author) ; Firoozabadi, Bahar (Supervisor) ; Firoozbakhsh, Keikhosrow (Supervisor)
    Abstract
    Liver is the largest internal organ of the human body which serves many vital functionalities. Recently, liver-on-a-chip systems have been used to model some of the vital liver specific-functions and to investigate its related diseases. The purpose of the present study was simulation of some of these liver specific functionalities on-a-chip and using the obtained results in predicting hepatocellular functionalities i.e. production of some metabolites and modeling some of the liver-related diseases which have been done numerically and experimentally. Numerical simulations have been developed in two-dimensional and three-dimensional forms. In the 2D simulation, the governing equations i.e.... 

    Investigation of Excitation-contraction behavior in Skeletal Muscle by Means of Chemomechanical Modeling

    , Ph.D. Dissertation Sharif University of Technology Karami, Mina (Author) ; Zohoor, Hassan (Supervisor) ; Firoozbakhsh, Keikhosrow (Supervisor)
    Abstract
    Numerous studies have shown a direct relationship between skeletal muscle active force and intracellular calcium ion concentrations; In fact, no matter how the muscle is stimulated (neurological, electrical, chemical, and mechanical stimuli), the main cause of muscle activation and consequently force generation is calcium ions.According to this scientific finding, the purpose of this study is to present a new chemo-mechanical multiscale model of skeletal muscle based on the fundamental principles of continuum thermodynamics. In this model, unlike other similar studies, muscle active force is not considered as the conventional multiplication of isometric force in a set of corrective... 

    Simulation of Red Blood Cell Passing Through Microvessels

    , M.Sc. Thesis Sharif University of Technology Hasanian, Mostafa (Author) ; Ahmadiyan, Mohammad Taghi (Supervisor) ; Firoozbakhsh, Keikhosrow (Supervisor)
    Abstract
    Red Blood Cells (RBCs) are the main cells in human blood with a main role in mechanical properties of blood as a fluid. Several methods are developed to simulate the behavior of RBCs motion and deformation in micro-capillaries. Since in microscopic scales, using discrete models are more preferred than continuum methods, moving particle semi-implicit method (MPS) which is one of the recent innovative particle based methods, can simulate micro-fluidic flows based on Navier-Stocks equations. Although by the recent developments MPS method has turned into a considerable tool for modeling blood flow in micro-scales, but still some problems, such as commitment to use small time steps, restrict the... 

    Role of Intra-Abdominal Pressure and Abdominal Muscle Activities on Spinal Stability and Spinal Loads

    , M.Sc. Thesis Sharif University of Technology Farahmand, Masoud (Author) ; ParnianPour, Mohamad (Supervisor) ; Firoozbakhsh, Keikhosrow (Co-Advisor)
    Abstract
    Spine is one of the most important musculoskeletal systems of the human body. Any problem which is related to this part of human body causes pain and disability. Spinal compression forces are one of the main reasons of this disability and pain. It is assumed that intra-abdominal pressure causes spinal unloading in lifting. Studies usually don’t consider the role of intra-abdominal pressure and introduce it as an effective parameter which can increases spinal stability and influences spinal mechanics.Generation mechanism of intra-abdominal pressure remain enigmatic, studies that advocate the unloading effect of IAP usually consider a raise in IAP to be primarily due to the activity of... 

    Simultaneusly Analysis of Torsional and Lateral Vibrations of Drillstrings using Cylindrical Superelement

    , M.Sc. Thesis Sharif University of Technology Ghorbani, Shokrollah (Author) ; Ahmadian, Mohammad Taghi (Supervisor) ; Firoozbakhsh, Keikhosrow (Co-Advisor)
    Abstract
    One of the most important parts of oil industry is drilling with rotating drillstrings. In a drillstring because of the contact between bit and formation, contact between drillstring and borehole wall, existence of drilling mud, misalignment in drillstring and stick-slip phenomenon; axial, lateral and torsional vibrations is created. These vibrations may lead to fatigue failures and abrasive wear of tubular, damaging the drill bit and borehole wall. In this thesis the drillsting vibrations is studied using finite element method. To this end, cylindrical superslement with C1 continuity is presented. By using the shape functions of this superelement; kinetic and potential energy of drillstring... 

    Effect of Curved Micro-beam on Natural Frequency and Pull-In Voltage Considering Strain Gradient Theory

    , M.Sc. Thesis Sharif University of Technology Derakhshan, Reza (Author) ; Ahmadiyan, Mohammad Taghi (Supervisor) ; Firoozbakhsh, Keikhosrow (Supervisor)
    Abstract
    A microbeam, actuated by electrostatic distributed force, is a flexible beam-shaped element attached to a fixed rigid substrate. Electrostatically actuated microbeams are extensively used in different applications such as signal filtering and mass sensing. When the input voltage exceeds a critical value, called pull-in voltage (V_pi), the flexible microbeam spontaneously deflects towards the rigid plate. Pull-in instability is a basic phenomenon considered in the design of the micro actuators. When the rate of voltage variation is low and consequently inertia has almost no influence on the microsystem behavior, the critical value of voltage is called static pull-in voltage (V_pi). However,... 

    Evaluation of Trunk Movement System Strategies through the Concept of Muscle Synergies

    , M.Sc. Thesis Sharif University of Technology Bagheri Rouchi, Mahdi (Author) ; Firoozbakhsh, Keikhosrow (Supervisor) ; Parnianpour, Mohammad (Co-Advisor)
    Abstract
    In this study, by dividing spine motion in two part, ordinary movement and initial-final accelerated movement, the commands of CNS are evaluated by optimization methods to find synchronous and time varying synergies. Spine, which is a complex structure of vertebrae and cartilage, has been modeled by a 3D inverted pendulum with a ball and socket joint at L4/L5 incorporated with 18 muscle fascicles. Planning of point-to-point spine motion is performed by optimal control method in combined with cost function of kinematics and kinetic features that available in spine structure. In the second step, coactivation of muscles is predicted by utilizing static optimization along with stability... 

    Modeling of Renal Autoregulation Systems

    , M.Sc. Thesis Sharif University of Technology Rajabtabar, Mohammad Javad (Author) ; Saeedi, Mohammad Saeed (Supervisor) ; Firoozbakhsh, Keikhosrow (Supervisor)
    Abstract
    The mathematical analysis of the kidney has always been considered due to its complex performance. It’s about two decades that mathematicians work on the mathematical modeling of this tissue. Since Glomerular filtration of blood in the kidney has been regarded by physiologists for many years, they can access only to the qualitative data. Mathematicians can solve this problem by numerical modeling. In this research, an engineering model is presented for the analysis of this capillary network by investigating in the different scientific fields such as, physiology, medicine, computer science and mathematics. There are two major renal autoregulatory mechanisms, the myogenic response and the... 

    Dynamic and Vibration Analysis of Functionally Graded Microswitches and Microresonators Based on the Strain Gradient Theory

    , Ph.D. Dissertation Sharif University of Technology Rahaeifard, Masoud (Author) ; Ahmadian, Mohammad Taghi (Supervisor) ; Firoozbakhsh, Keikhosrow (Supervisor)
    Abstract
    In this research, based on the strain gradient theory, mechanical behavior of functionally graded microbeams is analyzed and the results are used to investigate the static and dynamic responses of electrostatically actuated microswitches and microresonators.
    The nonlinear governing equations of motion of functionally graded microbeams are derived using Hamilton’s principle. Afterward, the nonlinear model is implemented to analyze the mechanical response of electrostatically actuated microswitches and microresonators. Pull-in instability and nonlinear vibration of these components are investigated considering the effects of squeeze film damping, mid-plane stretching and initial curvature... 

    Dynamic and Vibration Analysis of Micro-Mirrors Made of FGM

    , M.Sc. Thesis Sharif University of Technology Fakhary, Ahmad Reza (Author) ; Ahmadiyan, Mohammad Taghi (Supervisor) ; Firoozbakhsh, Keikhosrow (Supervisor)
    Abstract
    The important role of MEMS devices in optical system has initiated the development of a new class of MEMS called Micro-Opto-Electro-Mechanical systems (MEOMS), which mainly includes micromirrors and torsional microactuators. These devices have found variety of application in optical switches, display, micro scanning mirrors, optical cross-connects interferometry, spectroscopy, aberration correction and biomedical imaging. In this project, the dynamic behavior of electrostatic micromirrors under the effect of intermolecular surface forces and squeezed film damping are studied. The prior art published in the literature have mainly used pure torsion models. In a pure torsion, just the torsion... 

    Vibration Analysis of Spherical Structures and Open and Closed Rings Made of Functionally Graded Materials Using Spherical and Cylindrical Superelement

    , M.Sc. Thesis Sharif University of Technology Fatan, Ali Reza (Author) ; Ahmadian, Mohammad Taghi (Supervisor) ; Firoozbakhsh, Keikhosrow (Co-Advisor)
    Abstract
    New developments have led to the creation of functionally graded materials which their unique property is continous changing in material properties. The increasing use of these materials has caused a lot of research on various issues related to them. One of the applications is applying these materials in spherical structures and open and closed rings. In mechanical equipment spherical structures and rings are used in various ways. The spherical structures of small parts, such as bearings to large structures such as spherical tanks are used. Due to the rapid growth of technology in the construction of structures of functionally graded materials, analysis of these structures in different... 

    Simulation of Ultrasound Waves Propagation in Soft Tissue in Cancer Treating by HIFU

    , M.Sc. Thesis Sharif University of Technology Molayi, Hanif (Author) ; Ahmadiyan, Mohammad Taghi (Supervisor) ; Firoozbakhsh, Keikhosrow (Supervisor)
    Abstract
    Nowadays cancer has become one of the main and prevailing worldwide challenges in medical field, and many attempts have been made for treatment of this disease. The common methods for cancer treatment, have had significant side effects and even resulted death. The method of “High Intensity Focused Ultrasound” (HIFU) as a non-invasive method, has been welcomed by engineers and doctors and is using in some tumor based cancers. For predicting the level of temperature increasing in tissue, it’s necessary to model the ultrasound waves propagates from HIFU source precisely. The main object of this thesis is modeling and simulation of the behavior of ultrasound wave propagation and investigating... 

    Nonlinear Analysis of an Electrostatically Actuated Microbeam Considering Coupled Vibrations Due to Rotation

    , Ph.D. Dissertation Sharif University of Technology Mojahedi, Mahdi (Author) ; Ahmadian, Mohammad Taghi (Supervisor) ; Firoozbakhsh, Keikhosrow (Supervisor)
    Abstract
    This research is concerned with the study of the static, dynamic, vibration and instability of an electrostatically actuated microbeam gyroscope considering geometric nonlinearities and electrostatic fringing fields. A vibrating microbeam gyroscope consists of a beam with a rigid (proof) mass attached to it and undergoes coupled flexural-flexural vibrations coupled with base rotation. The primary oscillation is generated in drive direction of the microbeam gyroscope by a pair of DC and AC voltages on the mass. The secondary oscillation occurring in the sense direction is induced by the Coriolis coupling caused by the input angular rate of the beam along its axis. In this case gyroscope acts...