Loading...
Search for: ghaderi--a
0.012 seconds

    Output feedback adaptive control of a class of nonlinear discrete-time systems with unknown control directions and preceded by hysteresis

    , Article International Journal of Control ; Volume 88, Issue 11 , Jun , 2015 , Pages 2412-2422 ; 00207179 (ISSN) Hosseini Ardali, S. M ; Ghaderi, A ; Sharif University of Technology
    Taylor and Francis Ltd  2015
    Abstract
    This paper considers the output feedback adaptive controller design problem for a class of discrete-time nonlinear systems in output feedback form with unknown control directions and preceded by unknown hysteresis. The problem of lacking in a-priori knowledge on the control directions and unknown hysteresis are solved by using the discrete Nussbaum gain and Prandtl-Ishlinskii model, respectively. The system is transformed into the form of a nonlinear auto regressive moving average (NARMA) model to construct an output feedback control. To overcome the noncausal problem in the control design, future output prediction laws and parameter update laws with the dead-zone technique are constructed... 

    Tolerance–reliability analysis of mechanical assemblies for quality control based on Bayesian modeling

    , Article Assembly Automation ; Volume 39, Issue 5 , 2019 , Pages 769-782 ; 01445154 (ISSN) Khodaygan, S ; Ghaderi, A ; Sharif University of Technology
    Emerald Group Publishing Ltd  2019
    Abstract
    Purpose: The purpose of this paper is to present a new efficient method for the tolerance–reliability analysis and quality control of complex nonlinear assemblies where explicit assembly functions are difficult or impossible to extract based on Bayesian modeling. Design/methodology/approach: In the proposed method, first, tolerances are modelled as the random uncertain variables. Then, based on the assembly data, the explicit assembly function can be expressed by the Bayesian model in terms of manufacturing and assembly tolerances. According to the obtained assembly tolerance, reliability of the mechanical assembly to meet the assembly requirement can be estimated by a proper first-order... 

    Bayesian reliability-based robust design optimization of mechanical systems under both aleatory and epistemic uncertainties

    , Article Engineering Optimization ; 2022 ; 0305215X (ISSN) Hassani, H ; Khodaygan, S ; Ghaderi, A ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Uncertainties can be divided into two general categories: aleatory and epistemic. Conventional reliability-based robust design optimization approaches, which disregard epistemic uncertainties due to lack of knowledge about the physical nature of systems, have previously been developed. To overcome this weakness, unlike previous methods, a Bayesian reliability-based robust design optimization method is proposed in the presence of both aleatory and epistemic uncertainties. The proposed formulation is presented as a multi-objective optimization problem. The univariate dimension reduction method is used to approximate the mean and variance of the design function. The non-dominated sorting... 

    Growth of GaAs/AlxGa1- xAs layers by LPE method and their characterization by SIMS

    , Article EPJ Applied Physics ; Volume 55, Issue 3 , 2011 ; 12860042 (ISSN) Arghavani Nia, B ; Ghaderi, A ; Solaymani, S ; Oskoie, M ; Sharif University of Technology
    Abstract
    Growth of thin layers of compound semiconductors such as GaAs and Al x Ga1-x As was obtained by Liquid Phase Epitaxy (LPE) at 838-828 ° C in thickness range of 0.1-4.3 μm which was estimated by Scanning Electron Microscopy (SEM). By Secondary Ion Mass Spectroscopy (SIMS) measurements, type of impurity atoms and their density and uniformity with respect to thickness were measured. In this way we are sure that variation of impurity atoms such as Si, Te, Sn and Ge indicates that epilayers were formed uniformly and it demonstrated that the LPE growth was a suitable way to obtain a good quality of epitaxy layers. Amount of composition parameter x in the compound semiconductor AlxGa1-xAs was... 

    Separability in asymmetric phase-covariant cloning

    , Article Physics Letters, Section A: General, Atomic and Solid State Physics ; Volume 336, Issue 4-5 , 2005 , Pages 278-289 ; 03759601 (ISSN) Rezakhani, A. T ; Siadatnejad, S ; Ghaderi, A. H ; Sharif University of Technology
    Elsevier  2005
    Abstract
    Here, asymmetric phase-covariant quantum cloning machines are defined and trade-off between qualities of their outputs and its impact on entanglement properties of the outputs are studies. In addition, optimal families among these cloners are introduced and also their entanglement properties are investigated. An explicit proof of optimality is presented for the case of qubits, which is based on the no-signaling condition. Our optimality proof can also be used to derive an upper bound on trade-off relations for a more general class of optimal cloners which clone states on a specific orbit of the Bloch sphere. It is shown that the optimal cloners of the equatorial states, as in the case of... 

    Surface micromorphology and fractal geometry of Co/CP/X (X = Cu, Ti, SM and Ni) nanoflake electrocatalysts

    , Article RSC Advances ; Volume 6, Issue 32 , 2016 , Pages 27228-27234 ; 20462069 (ISSN) Ţəlu, Ş ; Solaymani, S ; Bramowicz, M ; Naseri, N ; Kulesza, S ; Ghaderi, A ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    This paper analyses the three-dimensional (3-D) surface texture of Co/CP/X (X = Cu, Ti, SM and Ni, CP: carbonaceous paste) nanoflakes prepared electrochemically using a conventional three electrode system. The surface chemical composition of the samples was investigated by X-ray photoelectron spectroscopy (XPS). Surface images were recorded using scanning electron microscopy (SEM) and analyzed by means of the fractal geometry. Statistical, fractal and functional surface properties of the prepared samples were computed. The statistical functions applied to the SEM data were employed in order to characterise the surfaces topographically (in amplitude, spatial distribution and pattern of... 

    In situ postweld heat treatment of transformation induced plasticity steel resistance spot welds

    , Article Science and Technology of Welding and Joining ; Volume 23, Issue 1 , 2018 , Pages 71-78 ; 13621718 (ISSN) Sajjadi Nikoo, S ; Pouranvari, M ; Abedi, A ; Ghaderi, A. A ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    Transformation-induced plasticity (TRIP) steel resistance spot welds are delicate to low-energy interfacial failure via crack propagation through martensitic fusion zone during cross-tension (CT) loading. This paper addresses the effect of three different types of in situ postweld heat treatment (PWHT) on the mechanical properties of TRIP steel resistance spot welds. Depending on the post weld second pulse current level, three different strengthening mechanisms were found including (i) martensite tempering with reduced hardness, (ii) refining of martensite packets with improved toughness and (iii) nugget re-melting/enlargement combined with possible reduction of grain boundary impurity... 

    Microstructure, morphology and electrochemical properties of Co nanoflake water oxidation electrocatalyst at micro- and nanoscale

    , Article RSC Advances ; Volume 7, Issue 21 , 2017 , Pages 12923-12930 ; 20462069 (ISSN) Naseri, N ; Solaymani, S ; Ghaderi, A ; Bramowicz, M ; Kulesza, S ; Ţălu, Ş ; Pourreza, M ; Ghasemi, S ; Sharif University of Technology
    Royal Society of Chemistry  2017
    Abstract
    Nowadays, fossil fuel limitations and environmental concerns push researchers to find clean and renewable energy resources. Solar hydrogen production via water splitting reactions in electrochemical and/or photo-electrochemical systems has been accepted as a promising route and efficient electrocatalysts are involved in both. Here, cobalt nanoflakes with an oxide/hydroxide surface and a conductive metallic core are grown on commercially available steel mesh modified with carbon based nanocomposites as a support layer. The portion of reduced graphene oxide sheets was changed from 0 to 100 wt% and the correlation of this concentration with the surface morphology and electro-catalytic activity... 

    How morphological surface parameters are correlated with electrocatalytic performance of cobalt-based nanostructures

    , Article Journal of Industrial and Engineering Chemistry ; Volume 57 , 2018 , Pages 97-103 ; 1226086X (ISSN) Naseri, N ; Talu, S ; Kulesza, S ; Qarechalloo, S ; Achour, A ; Bramowicz, M ; Ghaderi, A ; Solaymani, S ; Sharif University of Technology
    Korean Society of Industrial Engineering Chemistry  2018
    Abstract
    To overcome recent energy and environment challenges, developing efficient and low cost photocatalysts are unavoidable. In this context, design of semiconductor nanostructures modified with earth abundant co-catalysts for water splitting reactions requires well engineered and controlled process to optimize surface interface and maximize nanocomposite system efficiency. Here, TiO2 nanotube were synthesized electrochemically and decorated with cobalt based nanostructure co-catalyst for water oxidation reaction using low cost and scalable electro-deposition approach. By changing deposition parameters and complete studying on samples surface morphology and related statistical analysis data,... 

    Corrosion inhibition of a novel antihistamine-based compound for mild steel in hydrochloric acid solution: experimental and computational studies

    , Article Scientific Reports ; Volume 12, Issue 1 , 2022 ; 20452322 (ISSN) Ghaderi, M ; Ahmad Ramazani, S. A ; Kordzadeh, A ; Mahdavian, M ; Alibakhshi, E ; Ghaderi, A ; Sharif University of Technology
    Nature Research  2022
    Abstract
    Focused on the assessment of the diphenhydramine hydrochloride (DPH) capabilities as an alternative to conventional and harmful industrial corrosion inhibitors, electrochemical techniques were employed. The optimum concentration of 1000 ppm was determined by molecular simulation and validated through electrochemical experiments. The results acquired from the electrochemical impedance spectroscopy (EIS) study showed that DPH at a concentration of 1000 ppm has a corrosion efficiency of 91.43% after 6 h immersion. The DPH molecules' orientation on the surface was assessed based on EIS predicting horizontal adsorption on the surface. Molecular simulations were done to explore the adsorption...