Loading...
Search for: ghaemi-osgouie--k
0.007 seconds

    Mathematical modeling of dermal wound healing: A numerical solution

    , Article 2010 The 2nd International Conference on Computer and Automation Engineering, ICCAE 2010, 26 February 2010 through 28 February 2010, Singapore ; Volume 2 , 2010 , Pages 153-156 ; 9781424455850 (ISBN) Azizi, A ; Ghaemi Osgouie, K ; Sharif University of Technology
    2010
    Abstract
    Though wound healing process is well-researched, this area is poorly known. One reason is that all interactions have not been discovered, the main reason, though, is that the involved processes interact in a very complicated manner with nonlinear feedback. Such complex feedback mechanisms can be easily addressed by mathematical modeling. This paper contains a review of the mathematical modeling of cell interaction with extracellular matrix components during the process of dermal wound healing with focusing on remodeling phase. The models are of partial differential equation type and solved by numerical method  

    Dermal wound healing-remodeling phase: A biological review

    , Article 2010 The 2nd International Conference on Computer and Automation Engineering, ICCAE 2010, 26 February 2010 through 28 February 2010, Singapore ; Volume 2 , 2010 , Pages 88-90 ; 9781424455850 (ISBN) Azizi, A ; Ghaemi Osgouie, K ; Sharif University of Technology
    2010
    Abstract
    Though wound healing process is well-researched, this area is poorly known. One reason is that all interactions have not been discovered, the main reason, though, is that the involved processes interact in a very complicated manner with nonlinear feedback. Such complex feedback mechanisms can be easily addressed by mathematical modeling. This paper contains a review of the mathematical modeling of cell interaction with extracellular matrix components during the process of dermal wound healing with focusing on remodeling phase. The models are of partial differential equation type and solved by finite element method  

    Modeling of forced dermal wound healing using intelligent techniques

    , Article 2010 The 2nd International Conference on Computer and Automation Engineering, ICCAE 2010, 26 February 2010 through 28 February 2010, Singapore ; Volume 2 , 2010 , Pages 207-211 ; 9781424455850 (ISBN) Azizi, A ; Ghaemi Osgouie, K ; Sharif University of Technology
    2010
    Abstract
    Wound healing is a complex biological process dependent on multiple variables: tissue oxygenation, wound size, contamination, etc. Many of these factors depend on multiple factors themselves. Mechanisms for some interactions between these factors are still unknown but it is generally accepted that collagen synthesis, accumulation and organization are increased by mechanical stimuli, resulting in a forced healing process which improves mechanical properties of the damaged tissue. In this paper we focus on the neural networks and regard them as function approximators, and attempt to simulate remodeling phase of dermal wound healing process using neural networks as an intelligent technique  

    Design optimization of gimbal robotic joints based on task space manipulability

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010 ; Volume 3 , July , 2010 , Pages 567-572 ; 9780791849170 (ISBN) Mohammadi, F ; Hemmatian, I ; Ghaemi Osgouie, K ; Sharif University of Technology
    2010
    Abstract
    Featuring a nonlinear novel design, Gimbal transmission, is a replacement for traditional robotic joints like gearboxes and revolute joints. This mechanism is one of the most recent types of nonlinear direct transmission (DT) methods in robots. As an alternative for traditional drive methodologies - herein called direct drive transmission (DD) methods, DT provides dynamic coupling and joint interaction attenuation while its capability to be adjusted for a desired task space point, smooth input-output characteristic, and varying reduction ratio lead to a desired force and motion behavior for the whole manipulator. In this paper, design optimization of a gimbal mechanism used as a replacement... 

    Neural networks control of autonomous underwater vehicle

    , Article ICMEE 2010 - 2010 2nd International Conference on Mechanical and Electronics Engineering, Proceedings, 1 August 2010 through 3 August 2010 ; Volume 2 , August , 2010 , Pages V2117-V2121 ; 9781424474806 (ISBN) Amin, R ; Khayyat, A. A ; Ghaemi Osgouie, K ; Sharif University of Technology
    2010
    Abstract
    This paper describes a neural network controller for autonomous underwater vehicles (AUVs). The designed online multilayer perceptron neural network (OMLPNN) calculates forces and moments in earth fixed frame to eliminate the tracking errors of AUVs whose dynamics are highly nonlinear and time varying. Another OMLPNN has been designed to generate an inverse model of AUV, which determine the appropriate propeller's speed and control surfaces' angles receiving the forces and moments in the body fixed frame. The designed approximation based neural network controller with the use of the backpropagation learning algorithm has advantages and robustness to control the highly nonlinear dynamics of... 

    Optimization of kinematic redundancy and workspace analysis of a dual-arm cam-lock robot

    , Article Robotica ; Volume 34, Issue 1 , 2016 , Pages 23-42 ; 02635747 (ISSN) Rezaeian Jouybari, B ; Ghaemi Osgouie, K ; Meghdari, A ; Sharif University of Technology
    Cambridge University Press  2016
    Abstract
    In this paper, the problem of obtaining the optimal trajectory of a Dual-Arm Cam-Lock (DACL) robot is addressed. The DACL robot is a reconfigurable manipulator consisting of two cooperative arms, which may act separately. These may also be cam-locked in each other in some links and thus lose some degrees of freedom while gaining higher structural stiffness. This will also decrease their workspace volume. It is aimed to obtain the optimal configuration of the robot and the optimal joint trajectories to minimize the consumed energy for following a specific task space path. The Pontryagin's Minimum Principle is utilized with a shooting method to resolve kinematic redundancy. Numerical examples... 

    The design of PIP controller for a thermal system with large time delay

    , Article World Academy of Science, Engineering and Technology ; Volume 32 , 2009 , Pages 890-894 ; 2010376X (ISSN) Zareh, S. H ; Sarrafan, A ; Ghaemi Osgouie, K ; Sharif University of Technology
    Abstract
    This paper will first describe predictor controllers when the proportional-integral-derivative (PID) controllers are inactive for procedures that have large delay time (LDT) in transfer stage. Therefore in those states, the predictor controllers are better than the PID controllers, then compares three types of predictor controllers. The value of these controller's parameters are obtained by trial and error method, so here an effort has been made to obtain these parameters by Ziegler-Nichols method. Eventually in this paper Ziegler-Nichols method has been described and finally, a PIP controller has been designed for a thermal system, which circulates hot air to keep the temperature of a... 

    The select of a permanent magnet brushed DC motor with optimal controller for providing propellant of @home mobile robot

    , Article 2010 IEEE International Conference on Mechatronics and Automation, ICMA 2010, 4 August 2010 through 7 August 2010 ; August , 2010 , Pages 1137-1141 ; 9781424451418 (ISBN) Zareh, S. H ; Khosroshahi, M ; Abbasi, M ; Ghaemi Osgouie, K ; Sharif University of Technology
    2010
    Abstract
    This paper first will describe @Home Mobile Robot and DC motors. In continuous, is designed a Direct current (DC) motor for special task due to specific speed diagram for considered robot. This robot wants to work in intermittent operation condition. Finally is done a speed control on a selected permanent magnet brushed DC motor using of Linear-Quadratic-Regulator (LQR), Linear-Quadratic-Gaussian (LQG) and Fuzzy logic controllers