Loading...
Search for: ghavam--k
0.006 seconds

    Compact basis free relations for stress tensors conjugate to Hill's strain measures

    , Article 8th Biennial ASME Conference on Engineering Systems Design and Analysis, ESDA2006, Torino, 4 July 2006 through 7 July 2006 ; Volume 2006 , 2006 ; 0791837793 (ISBN); 9780791837795 (ISBN) Naghdabadi, R ; Asghari, M ; Ghavam, K ; Sharif University of Technology
    American Society of Mechanical Engineers  2006
    Abstract
    If the double contraction of a stress tensor such as T and rate of a Lagrangean strain tensor such as E, i.e. T : Ė produces the stress power then these stress and strain tensors are called a conjugate pair. The applications of the conjugate stress and strain measures are in the development of the basic relations in nonlinear continuum mechanics analysis such as modeling of constitutive equations of elastic-plastic materials. In this paper relations for stress tensors conjugate to an arbitrary Lagrangean strain measure of Hill's class are obtained. The results of this paper are more compact and simpler in compare with those available in the literature. The results are valid for the three... 

    Elastic-plastic modeling of the hardening materials based on an Eulerian strain tensor and a proper corotational rate

    , Article 2005 ASME Pressure Vessels and Piping Conference, PVP2005, Denver, CO, 17 July 2005 through 21 July 2005 ; Volume 2 , 2005 , Pages 201-206 ; 0277027X (ISSN) Naghdabadi, R ; Ghavam, K ; Sharif University of Technology
    2005
    Abstract
    In this paper a model for analyzing elastic-plastic kinematic hardening materials is introduced, based on the additive decomposition of the corotational rate of an Eulerian strain tensor In this model, the elastic constitutive equation as well as the flow rule and the hardening equation is expressed in terms of the elastic and plastic parts of the corotational rate of the mentioned Eulerian strain tensor and its conjugate stress tensor. In the flow rule, the plastic part of the corotational rate of the Eulerian strain tensor is related to the difference of the deviatoric part of the conjugate stress and the back stress tensors. A proportionality factor is used in this flow rule which must be...