Loading...
Search for: ghezelbash--f
0.009 seconds

    On perturbation method in mechanical, thermal and thermo-mechanical loadings of plates: Cylindrical bending of FG plates

    , Article ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik ; March , 2015 ; 00442267 (ISSN) Fallah, F ; Nosier, A ; Sharifi, M ; Ghezelbash, F ; Sharif University of Technology
    Wiley-VCH Verlag  2015
    Abstract
    The performance of perturbation method in nonlinear analyses of plates subjected to mechanical, thermal, and thermo-mechanical loadings is investigated. To this end, cylindrical bending of FG plates with clamped and simply-supported edges is considered. The governing equations of Mindlin's first-order shear deformation theory with von Kármán's geometric nonlinearity are solved using one- and two-parameter perturbation methods and the results are compared with the results of an analytical solution. The material properties are assumed to vary continuously through the thickness of the plate according to a power-law distribution of the volume fraction of the constituents. It is shown that the... 

    On perturbation method in mechanical, thermal and thermo-mechanical loadings of plates: Cylindrical bending of FG plates

    , Article ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik ; Volume 96, Issue 2 , 2016 , Pages 217-232 ; 00442267 (ISSN) Fallah, F ; Nosier, A ; Sharifi, M ; Ghezelbash, F ; Sharif University of Technology
    Wiley-VCH Verlag 
    Abstract
    The performance of perturbation method in nonlinear analyses of plates subjected to mechanical, thermal, and thermo-mechanical loadings is investigated. To this end, cylindrical bending of FG plates with clamped and simply-supported edges is considered. The governing equations of Mindlin's first-order shear deformation theory with von Kármán's geometric nonlinearity are solved using one- and two-parameter perturbation methods and the results are compared with the results of an analytical solution. The material properties are assumed to vary continuously through the thickness of the plate according to a power-law distribution of the volume fraction of the constituents. It is shown that the... 

    Comparison of spinal stability following motor control and general exercises in nonspecific chronic low back pain patients

    , Article Clinical Biomechanics ; Volume 48 , 2017 , Pages 42-48 ; 02680033 (ISSN) Shamsi, M ; Sarrafzadeh, J ; Jamshidi, A ; Arjmand, N ; Ghezelbash, F ; Sharif University of Technology
    Abstract
    Background Motor control exercise was claimed to improve spinal stability in patients with chronic non-specific back pain, but to investigate the effectiveness of this exercise, other outcome measures have been used rather than spinal stability itself. The aim of our study is to assess motor control exercise effects on spinal stability using a biomechanical model. Methods Fifty-one patients were assigned to either motor control or general exercises. Before and after trainings, participants were tested for spinal stability at seven isometric tasks. Electromyography signals were recorded from ten superficial muscles, and a hybrid EMG-driven musculoskeletal model estimated spinal stability...