Loading...
Search for: goodarzi--m
0.006 seconds

    Effect of expulsion on peak load and energy absorption of low carbon steel resistance spot welds

    , Article Science and Technology of Welding and Joining ; Volume 13, Issue 1 , 2008 , Pages 39-43 ; 13621718 (ISSN) Pouranvari, M ; Abedi, A ; Marashi, P ; Goodarzi, M ; Sharif University of Technology
    2008
    Abstract
    The effects of weld nugget size and expulsion on the performance of low carbon steel resistance spot weld have been investigated in the present paper. Failure mode, peak load and failure energy obtained in tensile-shear test have been used to describe the performance of spot weld. The influence of voids and porosity as well as electrode indentation associated with expulsion on peak load and failure energy is discussed. The results showed that although expulsion does not reduce the load carrying capacity of spot welds, it decreases their energy absorption capability which was attributed to the change of failure location due to excessive electrode indentation associated with expulsion. © 2008... 

    Numerical and experimental investigations of weld pool geometry in GTA welding of pure aluminum

    , Article Journal of Central South University ; Vol. 21, issue. 1 , 2014 , p. 20-26 Faraji, A. H ; Bahmani, A ; Goodarzi, M ; Seyedein, S. H ; Shabani, M. O ; Sharif University of Technology
    Abstract
    A 2-D numerical model was developed to predict the shape of weld pool in stationary GTA welding of commercial pure aluminium, without considering fluid flow in the weld pool. A Gaussian current density and heat input distribution on the surface of the workpiece were considered. The parameters of Gaussian distribution were modified by comparing calculated results with experimental ones. It was found that these distribution parameters are functions of applied current and arc length. Effects of arc length, applied current and welding time on the geometry of the weld pool were investigated. To check the validity of the model, a series of experiments were also conducted. In general, the agreement... 

    Data-based modeling and optimization of a hybrid column-adsorption/depth-filtration process using a combined intelligent approach

    , Article Journal of Cleaner Production ; Volume 236 , 2019 ; 09596526 (ISSN) Salehi, E ; Askari, M ; Aliee, M. H ; Goodarzi, M ; Mohammadi, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Lack of robust techniques for optimization of hybrid separation systems is obvious in the literature. A novel hybrid approach for modeling and optimization of a hybrid process consisting of fixed-bed adsorption column (FBAC) and dead-end filtration (DEF) for the removal of methylene blue from water was presented. Artificial neural network (ANN), response surface methodology (RSM) and genetic algorithm (GA) were used for this purpose. ANN was employed to successfully approximate the breakthrough curves. Central composite design was used to investigate the impact of the operating variables, i.e. feed flowrate, initial concentration, adsorption bed length, and filter type on the removal rate as... 

    A review on application of nanofluid in various types of heat pipes

    , Article Journal of Central South University ; Volume 26, Issue 5 , 2019 , Pages 1021-1041 ; 20952899 (ISSN) Nazari, M. A ; Ahmadi, M. H ; Sadeghzadeh, M ; Shafii, M. B ; Goodarzi, M ; Sharif University of Technology
    Central South University of Technology  2019
    Abstract
    Nanotechnology is widely used in heat transfer devices to improve thermal performance. Nanofluids can be applied in heat pipes to decrease thermal resistance and achieve a higher heat transfer capability. In the present article, a comprehensive literature review is performed on the nanofluids’ applications in heat pipes. Based on reviewed studies, nanofluids have a high capacity to boost the thermal behavior of various types of heat pipes such as conventional heat pipes, pulsating heat pipes, and thermosyphons. Besides, it is observed that there must be a selected amount of concentration for the high-performance utilization of nanoparticles; high concentration of nanoparticles causes a... 

    Friction stir welding of advanced high strength dual phase steel: Microstructure, mechanical properties and fracture behavior

    , Article Materials Science and Engineering A ; Volume 769 , January , 2020 Mahmoudiniya, M ; Kokabi, A. H ; Goodarzi, M ; Kestens, L. A. I ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this study, butt welds of an advanced high strength dual phase steel were fabricated using friction stir welding at a constant rotational speed of 800 rpm and different transverse speeds of 100, 150 and 200 mm/min. It was observed that sound welds can be obtained at transverse speeds of 100 and 150 mm/min. At transverse speed of 100 mm/min, the entire stir zone processed at temperatures higher than Ac3. By increasing transverse speed to 150 mm/min, temperature in the bottom region of the stir zone lied between Ac1 and Ac3, while the middle and the top regions experienced temperatures higher than Ac3. The lower peak temperature in the bottom region of the stir zone resulted in finer and... 

    The effect of improved cooling on the microstructure and mechanical properties of friction stir-welded advanced high-strength dual-phase steel

    , Article Steel Research International ; Volume 92, Issue2 , August , 2020 Mahmoudiniya, M ; Kokabi, A. H ; Goodarzi, M ; Kestens, L. A. I ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    The heat-affected zone (HAZ)softening is considered one of the most significant challenges during welding of ferrite–martensite dual-phase (DP) steels. In fact, the strain localization in the softened area results in a premature fracture that degrades the mechanical properties of the joint. Herein, the objective is to investigate the effectiveness of improved cooling using a high thermal diffusivity backing plate (BP) to reduce HAZ softening and enhance the mechanical properties of friction stir-welded DP700 steel. Accordingly, friction stir butt welding of DP700 steel was conducted using copper and mild steel BPs. The findings show that the replacement of steel BP with copper significantly... 

    Microstructure and failure behavior of dissimilar resistance spot welds between low carbon galvanized and austenitic stainless steels

    , Article Materials Science and Engineering A ; Volume 480, Issue 1-2 , 2008 , Pages 175-180 ; 09215093 (ISSN) Marashi, P ; Pouranvari, M ; Amirabdollahian, S ; Abedi, A ; Goodarzi, M ; Sharif University of Technology
    2008
    Abstract
    Resistance spot welding was used to join austenitic stainless steel and galvanized low carbon steel. The relationship between failure mode and weld fusion zone characteristics (size and microstructure) was studied. It was found that spot weld strength in the pullout failure mode is controlled by the strength and fusion zone size of the galvanized steel side. The hardness of the fusion zone which is governed by the dilution between two base metals, and fusion zone size of galvanized carbon steel side are dominant factors in determining the failure mode. © 2007 Elsevier B.V. All rights reserved  

    Modelling of queue length in freeway work zones – case study karaj-tehran freeway

    , Article Promet - Traffic - Traffico ; Volume 33, Issue 1 , 2021 , Pages 49-59 ; 03535320 (ISSN) Mousazadeh Gilandeh , M ; Sharif Ali , S ; Goodarzi, M. J ; Amini, N ; Latifi, H ; Sharif University of Technology
    Faculty of Transport and Traffic Engineering  2021
    Abstract
    In this study, the traffic parameters were collected from three work zones in Iran in order to evaluate the queue length in the work zones. The work zones were observed at peak and non-peak hours. The results showed that abrupt changes in Freeway Free Speed (FFS) and arrival flow rate caused shockwaves and created a bot-tleneck in that section of the freeway. In addition, accel-eration reduction, abrupt change in the shockwave speed, abrupt change in the arrival flow rate and increase in the percentage of heavy vehicles have led to extreme queue lengths and delay. It has been found that using daily traffic data for scheduling the maintenance and rehabilita-tion projects could diminish the... 

    The effect of improved cooling on the microstructure and mechanical properties of friction stir-welded advanced high-strength dual-phase steel

    , Article Steel Research International ; Volume 92, Issue 2 , 2021 ; 16113683 (ISSN) Mahmoudiniya, M ; Kokabi, A. H ; Goodarzi, M ; Kestens, L. A. I ; Sharif University of Technology
    Wiley-VCH Verlag  2021
    Abstract
    The heat-affected zone (HAZ) softening is considered one of the most significant challenges during welding of ferrite–martensite dual-phase (DP) steels. In fact, the strain localization in the softened area results in a premature fracture that degrades the mechanical properties of the joint. Herein, the objective is to investigate the effectiveness of improved cooling using a high thermal diffusivity backing plate (BP) to reduce HAZ softening and enhance the mechanical properties of friction stir-welded DP700 steel. Accordingly, friction stir butt welding of DP700 steel was conducted using copper and mild steel BPs. The findings show that the replacement of steel BP with copper significantly... 

    Self-organized titanium oxide nanotubes prepared in phosphate electrolytes: Effect of voltage and fluorine concentration

    , Article ECS Transactions, 25 April 2010 through 30 April 2010 ; Volume 28, Issue 7 , April , 2010 , Pages 67-74 ; 19385862 (ISSN) ; 9781607681830 (ISBN) Mahshid, S ; Dolati, A ; Goodarzi, M ; Askari, M ; Ghahramaninezhad, A ; ECS All Divisions ; Sharif University of Technology
    2010
    Abstract
    TiO2 a nanotube array was prepared using an anodization process. The process proceeded in a two-electrode cell containing of platinum sheet as the cathode electrode. Two phosphate-base electrolyte solutions containing different amounts of HF and NH4F were prepared. Different concentration of fluorine ions were examined in respected electrolytes. Current transient techniques were used to produce the TiO2 nanotubes at constant voltage of 18-25V. It was revealed that anodization at 18-22V, in so-called electrolytes would end up to nano-tubular structure. However the tubular structure prepared at 20V and from phosphate electrolyte containing of 0.5 wt% NH4F as well as 0.5 wt% HF, was recognized... 

    Effect of two steps annealing on the microstructure and dynamic strain aging behavior of Al-6Mg alloy

    , Article Materials Science and Engineering A ; Volume 798 , 2020 Saadat, Z ; Khani Moghanaki, S ; Kazeminezhad, M ; Goodarzi, M ; Ghiasi Afjeh, S. M. B ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The microstructure of cold rolled Al–6Mg alloy is investigated after two steps annealing at different coupled temperatures of 250–320 °C and 320–400 °C for various times. Dynamic strain aging behavior in terms of serrated flow and strain rate sensitivity is investigated. The effect of three microstructural features, cell structure, recovered and recrystallized microstructures, on the strain rate sensitivity is elucidated. Two steps annealing process is utilized to capture the effect of recovery and precipitation phenomena on recrystallization and dynamic strain aging behaviors. The results show that the negative strain rate sensitivity of cold rolled specimen increases to positive values in... 

    Relationship between failure behaviour and weld fusion zone attributes of austenitic stainless steel resistance spot welds

    , Article Materials Science and Technology ; Volume 24, Issue 12 , 2008 , Pages 1506-1512 ; 02670836 (ISSN) Marashi, P ; Pouranvari, M ; Sanaee, M. H ; Abedi, A ; Abootalebi, H ; Goodarzi, M ; Sharif University of Technology
    2008
    Abstract
    Resistance spot welding was used to join austenitic stainless steel sheets. Mechanical properties of the spot welds were evaluated using tensile shear test. Mechanical behaviour was described by peak load, failure energy and failure mode. The relationship between weld fusion zone attributes and failure behaviour was studied. Generally, it was observed that increasing fusion zone size is accompanied by an increase in load carrying capacity and energy absorption capability. However, when expulsion occurs, despite almost constant weld fusion zone size, energy absorption capability reduces significantly due to increase in electrode indentation depth. Considering the failure location and failure... 

    Effect of weld nugget size on overload failure mode of resistance spot welds

    , Article Science and Technology of Welding and Joining ; Volume 12, Issue 3 , 2007 , Pages 217-225 ; 13621718 (ISSN) Pouranvari, M ; Asgari, H. R ; Mosavizadch, S. M ; Hoveida Marashi, P ; Goodarzi, M ; Sharif University of Technology
    2007
    Abstract
    In the present paper, effects of welding current, welding time, electrode pressure and holding time on the weld nugget size were studied. A failure mechanism was proposed to describe both interfacial and pullout failure modes. This mechanism was confirmed by SEM investigations. In the light of this mechanism, the effect of welding parameters on static weld strength and failure mode was studied. Then, an analytical model was proposed to predict failure mode and to estimate minimum nugget diameter (critical diameter) to ensure pullout failure mode in shear tensile test. On the contrary to existing industrial standards, in this model, critical nugget diameter is attributed to metallurgical...