Loading...
Search for: hajihassanpour--m
0.004 seconds

    Chebyshev collocation spectral lattice Boltzmann method for simulation of low-speed flows

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 91, Issue 1 , January , 2015 ; 15393755 (ISSN) Hejranfar, K ; Hajihassanpour, M ; Sharif University of Technology
    American Physical Society  2015
    Abstract
    In this study, the Chebyshev collocation spectral lattice Boltzmann method (CCSLBM) is developed and assessed for the computation of low-speed flows. Both steady and unsteady flows are considered here. The discrete Boltzmann equation with the Bhatnagar-Gross-Krook approximation based on the pressure distribution function is considered and the space discretization is performed by the Chebyshev collocation spectral method to achieve a highly accurate flow solver. To provide accurate unsteady solutions, the time integration of the temporal term in the lattice Boltzmann equation is made by the fourth-order Runge-Kutta scheme. To achieve numerical stability and accuracy, physical boundary... 

    A high-order nodal discontinuous galerkin method for solution of compressible non-cavitating and cavitating flows

    , Article Computers and Fluids ; Volume 156 , 2017 , Pages 175-199 ; 00457930 (ISSN) Hejranfar, K ; Hajihassanpour, M ; Sharif University of Technology
    Abstract
    In this work, a high-order nodal discontinuous Galerkin method is applied and assessed for the simulation of compressible non-cavitating and cavitating flows. The one-fluid approach with the thermal effects is used to properly model the cavitation phenomenon. Here, the spatial and temporal derivatives in the system of governing equations are discretized using the nodal discontinuous Galerkin method and the third-order TVD Runge–Kutta method, respectively. Various numerical fluxes such as the Roe, Rusanov, HLL, HLLC and AUSM+-up and two discontinuity capturing methods, namely, the generalized MUSCL limiter and a generalized exponential filter are implemented in the solution algorithm. At... 

    Chebyshev collocation spectral lattice boltzmann method in generalized curvilinear coordinates

    , Article Computers and Fluids ; Volume 146 , 2017 , Pages 154-173 ; 00457930 (ISSN) Hejranfar, K ; Hajihassanpour, M ; Sharif University of Technology
    Abstract
    In this work, the Chebyshev collocation spectral lattice Boltzmann method is implemented in the generalized curvilinear coordinates to provide an accurate and efficient low-speed LB-based flow solver to be capable of handling curved geometries with non-uniform grids. The low-speed form of the D2Q9 and D3Q19 lattice Boltzmann equations is transformed into the generalized curvilinear coordinates and then the spatial derivatives in the resulting equations are discretized by using the Chebyshev collocation spectral method and the temporal term is discretized with the fourth-order Runge–Kutta scheme to provide an accurate and efficient low-speed flow solver. All boundary conditions are...