Loading...
Search for: hannani--s--k
0.011 seconds
Total 37 records

    Wind farm layout optimization using imperialist competitive algorithm

    , Article Journal of Renewable and Sustainable Energy ; Vol. 6, Issue. 4 , July , 2014 ; ISSN: 19417012 Kiamehr, K ; Hannani, S. K ; Sharif University of Technology
    Abstract
    In this work, the wind farm layout optimization problem is dealt with using a new approach. The aim of wind farm layout optimization is to maximize the output power of a wind farm considering the wake losses. Layout optimization minimizes the wake losses regarding the location of the turbines. Three different wind scenarios with different wind direction angles, wind direction blowing probabilities, and Weibull distribution parameters are assumed. Since, the problem is nonlinear and constrained, imperialist competitive algorithm is used as a modern and powerful algorithm for continuous optimization problems. The optimization outcomes indicate that imperialist competitive algorithm yields... 

    Simulation of buoyant bubble motion in viscous flows employing lattice Boltzmann and level set methods

    , Article Scientia Iranica ; Volume 18, Issue 2 B , 2011 , Pages 231-240 ; 10263098 (ISSN) Mehravaran, M ; Hannani, S. K ; Sharif University of Technology
    2011
    Abstract
    Recently, a hybrid Lattice Boltzmann Level Set Method (LBLSM) for two-phase incompressible fluids with large density differences, in cases of negligible or a priori known pressure gradients, has been proposed. In the present work, the mentioned LBLSM method is extended to take into account pressure gradient effects. The lattice Boltzmann method is used for calculating velocities, the interface is captured by the level set function, and the surface tension is replaced by an equivalent body force. The method can be applied to simulate two-phase fluid flows with density ratios up to 1000 and viscosity ratios up to 100. In order to validate the method, the evolution and merging of rising bubbles... 

    Simulation of incompressible two-phase flows with large density differences employing lattice Boltzmann and level set methods

    , Article Computer Methods in Applied Mechanics and Engineering ; Volume 198, Issue 2 , December , 2008 , Pages 223-233 ; 00457825 (ISSN) Mehravaran, M ; Hannani, S. K ; Sharif University of Technology
    2008
    Abstract
    A hybrid lattice Boltzmann and level set method (LBLSM) for two-phase immiscible fluids with large density differences is proposed. The lattice Boltzmann method is used for calculating the velocities, the interface is captured by the level set function and the surface tension force is replaced by an equivalent force field. The method can be applied to simulate two-phase fluid flows with the density ratio up to 1000. In case of zero or known pressure gradient the method is completely explicit. In order to validate the method, several examples are solved and the results are in agreement with analytical or experimental results. © 2008 Elsevier B.V. All rights reserved  

    Effect of fuel and engine operational characteristics on the heat loss from combustion chamber surfaces of SI engines

    , Article International Communications in Heat and Mass Transfer ; Volume 33, Issue 1 , 2006 , Pages 122-134 ; 07351933 (ISSN) Jafari, A ; Hannani, S. K ; Sharif University of Technology
    2006
    Abstract
    Understanding of engine heat transfer is important because of its influence on engine efficiency, exhaust emissions and component thermal stresses. In this paper, the effect of various parameters such as compression ratio, equivalence ratio, spark timing, engine speed, inlet mixture temperature and swirl ratio as well as fuel type on the heat transfer through the chamber walls of a spark ignition (SI) engine is studied. For this purpose, a proper tool is developed which uses a KIVA multidimensional combustion modeling program and a finite-element heat conduction (FEHC) code iteratively. Also, an improved temperature wall function is used for the KIVA program. It was found that this iterative... 

    Analysis and modeling of building thermal response to investigate the effect of boundary conditions

    , Article Scientia Iranica ; Vol. 20, Issue. 4 , 2014 , pp. 1269-1277 ; ISSN: 10263098 Moziraji, Z. P ; Azimi, A ; Hannani, S. K ; Sharif University of Technology
    Abstract
    Thermal load simulation and sensitivity analysis are performed for a building in Tehran by numerical means. A heat conduction equation of the walls, together with appropriate convection and radiation boundary conditions, is simulated numerically to compute temperature distributions in the walls. This research proposes a heat balance method, coupled with a bulk model, to calculate the building thermal load. In the first step, the results of the building thermal load for weather data of Tehran are compared and validated with those of Carrier HAP software, and a good agreement is found between them. The building thermal load depends on the boundary conditions of the building. The influence of... 

    The effect of various test parameters on the steady flow test results of a four-valve spark ignition engine: A tentative approach toward standardization

    , Article Advances in Mechanical Engineering ; Volume 2013 , 2013 ; ISSN: 16878132 Mohammadebrahim, A ; Shafii, M. B ; Hannani, S. K ; Sharif University of Technology
    2013
    Abstract
    The present paper is an account of an experimental analysis carried out to investigate to what extent the flow characteristics in the intake system of a 4-valve, spark ignition internal combustion engine depend on the experimental conditions at the steady flow test bench. In this respect, the study is aimed at determining the influences of the intake adaptor, test pressure, adaptor length and diameter, adaptor roughness, paddle wheel diameter, and asymmetric valves lifting on the flow coefficient and the swirl intensity measurements. In studies of this kind, researchers generally tend to adopt different test parameters to arrive at a nonuniform base to compare results from several... 

    A numerical comparative study of various flooding techniques in hydrocarbon reservoirs

    , Article Journal of Porous Media ; Volume 15, Issue 2 , 2012 , Pages 101-112 ; 1091028X (ISSN) Naderan, H ; Manzari, M. T ; Hannani, S. K ; Sharif University of Technology
    2012
    Abstract
    This paper investigates the efficiency and performance of several of the fiooding techniques popular in secondary and enhanced oil recovery. These processes include water fiooding, immiscible and miscible gas fiooding, and several forms of water-alternating-gas (WAG) injection. The study is carried out numerically on a typical one-dimensional domain using an advanced high-resolution central scheme. Some performance indices such as oil cut drop, breakthrough time, and sweep efficiency were employed to evaluate the appropriateness of each injection strategy  

    Improvement and experimental validation of a multi-zone model for combustion and NO emissions in CNG fueled spark ignition engine

    , Article Journal of Mechanical Science and Technology ; Volume 26, Issue 4 , 2012 , Pages 1205-1212 ; 1738494X (ISSN) Asgari, O ; Hannani, S. K ; Ebrahimi, R ; Sharif University of Technology
    2012
    Abstract
    This article reports the experimental and theoretical results for a spark ignition engine working with compressed natural gas as a fuel. The theoretical part of this work uses a zero-dimensional, multi-zone combustion model in order to predict nitric oxide (NO) emission in a spark ignition (SI) engine. The basic concept of the model is the division of the burned gas into several distinct zones for taking into account the temperature stratification of the burned mixture during combustion. This is especially important for accurate NO emissions predictions, since NO formation is strongly temperature dependent. During combustion, 12 products are obtained by chemical equilibrium via Gibbs energy... 

    Analytical relations for long-droplet breakup in asymmetric T junctions

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 91, Issue 5 , May , 2015 ; 15393755 (ISSN) Bedram, A ; Moosavi, A ; Hannani, S. K ; Sharif University of Technology
    American Physical Society  2015
    Abstract
    We develop accurate analytical relations for the droplet volume ratio, droplet length during breakup process, and pressure drop of asymmetric T junctions with a valve in each of the branches for producing unequal-sized droplets. An important advantage of this system is that after manufacturing the system, the size of the generated droplets can be changed simply by adjusting the valves. The results indicate that if the valve ratio is smaller than 0.65, the system enters a nonbreakup regime. Also the pressure drop does not depend on the time and decreases by increasing the valve ratio, namely, opening the degree of valve 1 to valve 2. In addition, the results reveal that by decreasing... 

    Modeling changes in wind speed with height in Iran's cities and its impact on the energy production

    , Article Journal of Renewable and Sustainable Energy ; Volume 7, Issue 2 , 2015 ; 19417012 (ISSN) Sedghi, M ; Boroushaki, M ; Hannani, S. K ; Sharif University of Technology
    Abstract
    The estimation of the wind resource at the hub height of a wind turbine is one of the primary goals of site assessment. Since in a majority of cities the wind speed is measured at lower heights, the power law model is applied to estimate the wind speed at higher heights. In this study, the wind data for 10 cities in Iran have been analyzed over a period of one year. The accuracy of the power law model to estimate the wind speed has been examined with variations of height and time during this year. The energy production of a wind turbine using the measured wind speeds and the speeds estimated by the power law model were compared. The measured data revealed that in some cities the wind speed... 

    Estimation of weibull parameters for wind energy application in Iran's cities

    , Article Wind and Structures, An International Journal ; Volume 21, Issue 2 , 2015 , Pages 203-221 ; 12266116 (ISSN) Sedghi, M ; Hannani, S. K ; Boroushaki, M ; Sharif University of Technology
    Techno Press  2015
    Abstract
    Wind speed is the most important parameter in the design and study of wind energy conversion systems. The weibull distribution is commonly used for wind energy analysis as it can represent the wind variations with an acceptable level of accuracy. In this study, the wind data for 11 cities in Iran have been analysed over a period of one year. The Goodness of fit test is used for testing data fit to weibull distribution. The results show that this data fit to weibull function very well. The scale and shape factors are two parameters of the weibull distribution that depend on the area under study. The kinds of numerical methods commonly used for estimating weibull parameters are reviewed. Their... 

    Determination of parabolic trough solar collector efficiency using nanofluid:a comprehensive numerical study

    , Article Journal of Solar Energy Engineering, Transactions of the ASME ; Volume 139, Issue 5 , 2017 ; 01996231 (ISSN) Khakrah, H ; Shamloo, A ; Hannani, S. K ; Sharif University of Technology
    Abstract
    Due to significant reduction in fossil fuel sources, several researches have been conducted recently to explore modern sources of renewable energy. One of the major fields in the category of renewable energy harnessing devices is parabolic trough solar collector (PTC). Several parameters have effect on the overall efficiency of the PTCs. As the effect of these parameters is coupled to each other, a comprehensive investigation is necessary. In the present study, a numerical analysis is performed to examine the efficiency of PTCs via variation of several governing parameters (e.g., wind velocity magnitude, nanoparticles volume fraction, inlet temperature, and reflector's orientation). A... 

    A quasi-three-dimensional thermal model for multi-stream plate fin heat exchangers

    , Article Applied Thermal Engineering ; Volume 157 , 2019 ; 13594311 (ISSN) Niroomand, R ; Saidi, M. H ; Hannani, S. K ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this study, a novel pseudo-three-dimensional model is developed to find out both fluid and solid temperature distributions in multi-stream plate fin heat exchangers. In this simulation algorithm, heat exchangers can be in either parallel flow or cross flow configuration. The model considerations include: heat leakage of cap plates and side plates, conduction throughout the solid matrix of the heat exchanger, variable physical properties, and inlet mass flow rate maldistribution. Using the computational code, the effects of different factors such as: the number of layers, mass flow variation, inlet mass flow rate maldistribution, and stacking pattern on the thermal performance of the heat... 

    Molecular dynamics study of friction reduction of two-phase flows on surfaces using 3d hierarchical nanostructures

    , Article Journal of Physical Chemistry C ; 2019 ; 19327447 (ISSN) Saleki, O ; Moosavi, A ; Hannani, S. K ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    The use of superhydrophobic surfaces is one the most promising methods for reducing the friction and increasing the flow rate in fluid transfer systems. Because in such systems the surface structure plays a key role, in this study, we explore the performance of the hierarchical nanostructures. These nanostructures are inspired by the superhydrophobic surface of the lotus leaf. We consider a flow between two walls with hierarchical nanostructures and simulate the system via the molecular dynamics method. The size of the nanostructures and the distance between them have been studied to find whether a design with a maximum flow rate exists. The nanostructures have two parts, a bigger part on... 

    Non-Newtonian droplet-based microfluidics logic gates

    , Article Scientific Reports ; Volume 10, Issue 1 , 2020 Asghari, E ; Moosavi, A ; Hannani, S. K ; Sharif University of Technology
    Nature Research  2020
    Abstract
    Droplet-based microfluidic logic gates have many applications in diagnostic assays and biosciences due to their automation and the ability to be cascaded. In spite of many bio-fluids, such as blood exhibit non-Newtonian characteristics, all the previous studies have been concerned with the Newtonian fluids. Moreover, none of the previous studies has investigated the operating regions of the logic gates. In this research, we consider a typical AND/OR logic gate with a power-law fluid. We study the effects of important parameters such as the power-law index, the droplet length, the capillary number, and the geometrical parameters of the microfluidic system on the operating regions of the... 

    A general multi-scale modeling framework for two-phase simulation of multi-stream plate-fin heat exchangers

    , Article International Journal of Heat and Mass Transfer ; Volume 156 , 2020 Niroomand, R ; Saidi, M. H ; Hannani, S. K ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Compact heat exchangers are among the vital components used in various industries. In this study, a general framework has been developed with a multi-scale point of view for three-dimensional simulation of multi-stream plate-fin heat exchangers. The most important features in the MSPFHEs simulation, such as phase change phenomena, multi-component mixtures, multiple streams, transversal, lateral and longitudinal conduction, non-uniformity of inlet flow, variable fluid properties, and heat leakage are simultaneously considered in this model. The modular form of the model structure has facilitated layer-by-layer simulation of cross flow heat exchangers as well as parallel flow ones. Our model... 

    Microfluidic technologies to engineer mesenchymal stem cell aggregates—applications and benefits

    , Article Biophysical Reviews ; Volume 12, Issue 1 , 2020 , Pages 123-133 Salehi, S. S ; Shamloo, A ; Kazemzadeh Hannani, S. K ; Sharif University of Technology
    Springer  2020
    Abstract
    Three-dimensional cell culture and the forming multicellular aggregates are superior over traditional monolayer approaches due to better mimicking of in vivo conditions and hence functions of a tissue. A considerable amount of attention has been devoted to devising efficient methods for the rapid formation of uniform-sized multicellular aggregates. Microfluidic technology describes a platform of techniques comprising microchannels to manipulate the small number of reagents with unique properties and capabilities suitable for biological studies. The focus of this review is to highlight recent studies of using microfluidics, especially droplet-based types for the formation, culture, and... 

    An analytical solution for thermally fully developed combined pressure - electroosmotically driven flow in microchannels

    , Article International Journal of Heat and Mass Transfer ; Volume 50, Issue 5-6 , 2007 , Pages 1087-1096 ; 00179310 (ISSN) Qazi Zade, A ; Taghizadeh Manzari, M ; Hannani, S. K ; Sharif University of Technology
    2007
    Abstract
    An analytical solution is presented to study the heat transfer characteristics of the combined pressure - electroosmotically driven flow in planar microchannels. The physical model includes the Joule heating effect to predict the convective heat transfer coefficient in two dimensional microchannels. The velocity field, which is a function of external electrical field, electroosmotic mobility, fluid viscosity and the pressure gradient, is obtained by solving the hydrodynamically fully-developed laminar Navier-Stokes equations considering the electrokinetic body force for low wall zeta potentials. Then, assuming a thermally fully-developed flow, the temperature distribution and the Nusselt... 

    Compatible numerical schemes for coupled flow and transport in porous media

    , Article 8th Biennial ASME Conference on Engineering Systems Design and Analysis, ESDA2006, Torino, 4 July 2006 through 7 July 2006 ; Volume 2006 , 2006 ; 0791837793 (ISBN); 9780791837795 (ISBN) Zade, A. Q ; Manzari, M. T ; Hannani, S. K ; Sharif University of Technology
    American Society of Mechanical Engineers  2006
    Abstract
    In this paper, the compatibility of various combinations of numerical schemes for the solution of flow and transport equations in porous media is studied and the possible loss of accuracy and global mass conservation are investigated. Here, the flow equations are solved using three popular finite element methods including the Standard Galerkin (SG), Discontinuous Galerkin (DG) and Mixed Finite Element (MFE) methods among which only the DG method possesses the local conservation property. Besides, the transport of a scalar variable which is governed by a convection-diffusion equation is studied in conjunction with the flow equations. The transport equation is solved using both the Streamline... 

    Optimization analysis of alternate tube section for pulse tube refrigerators

    , Article 8th Biennial ASME Conference on Engineering Systems Design and Analysis, ESDA2006, Torino, 4 July 2006 through 7 July 2006 ; Volume 2006 , 2006 ; 0791837793 (ISBN); 9780791837795 (ISBN) Jafarian, A ; Saidi, M. H ; Hannani, S. K ; Sharif University of Technology
    American Society of Mechanical Engineers  2006
    Abstract
    In spite of numerous attempts which have been made during the last decade to optimize pulse tube refrigerators, still theoretical and analytical realization of this device needs to be thoroughly explained. In this paper, in addition to the oscillatory flow analysis in the pulse tube refrigerator through a simple analytical model, the performance of the alternate tube section of this device is analyzed using a generalized efficiency, based on the entropy generation rate. In this model, in order to extract the entropy generation rate and the dissipative terms caused by fluid friction and heat flow in alternate tube, simplified momentum and energy equations are solved analytically and velocity...