Loading...
Search for: hasanzadeh-azar--m
0.005 seconds

    Surface/edge functionalized boron nitride quantum dots: Spectroscopic fingerprint of bandgap modification by chemical functionalization

    , Article Ceramics International ; Volume 46, Issue 1 , 2020 , Pages 978-985 Angizi, S ; Shayeganfar, F ; Hasanzadeh Azar, M ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Promising properties of boron nitride nanomaterials such as their chemical, thermal, and mechanical stability have made them suitable materials in a various range of applications. However, their low electrical conductivity and wide bandgap, particularly in the case of boron nitride quantum dots (BNQDs), have given rise to severe limitations. Efforts on bandgap engineering through doping and surface functionalization have gained little success due to their high thermodynamic stability and inertness. Herein, we present a novel approach to functionalize BNQDs by hydroxyl, methyl, and amine functional groups aiming to adjust the electronic structure. The successful exfoliation is demonstrated by... 

    A comprehensive review on planar boron nitride nanomaterials: From 2D nanosheets towards 0D quantum dots

    , Article Progress in Materials Science ; Volume 124 , 2022 ; 00796425 (ISSN) Angizi, S ; Alem, S. A. A ; Hasanzadeh Azar, M ; Shayeganfar, F ; Manning, M. I ; Hatamie, A ; Pakdel, A ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Moving from two-dimensional hexagonal boron nitride (2D h-BN) flatlands towards their quantum sized zero-dimensional (0D) islands, as the newest member of the h-BN family, has recently opened up novel research areas due to the emergence of unique optical and physicochemical properties, excellent thermal and chemical stability, and desirable biocompatibility. This review elaborates on the fundamental properties of 2D and 0D h-BN nanomaterials and covers the latest progress in the fabrication and applications of BN nanosheets (BNNSs) and quantum dots (BNQDs). Initially, the transformation of properties in h-BN nanomaterials is discussed when moving from the 2D realm towards the 0D quantum...