Loading...
Search for: hashemi--r
0.005 seconds
Total 22 records

    Solution of burgers' equation using a local-rbf meshless method

    , Article International Journal of Computational Methods in Engineering Science and Mechanics ; Volume 12, Issue 1 , Feb , 2011 , Pages 44-58 ; 15502287 (ISSN) Hosseini, B ; Hashemi, R ; Sharif University of Technology
    2011
    Abstract
    A local radial basis function (RBF) meshless method is applied for solution of the Burgers' equation with different initial and boundary conditions of various complexities. Local-RBF collocation is employed for discretization in space, whilst the unsteady term is handled via a simple explicit time discretization. Moreover, in case of non-smooth initial conditions with high Reynolds numbers, a treatment is proposed for inability of local-RBF methods to solve such problems. The scheme is validated over a variety of benchmark problems and very good agreement is found with existing analytical and numerical solutions  

    Analysis of deep drawing process to predict the forming severity considering inverse finite element and extended strain-based forming limit diagram

    , Article Journal of Computational and Applied Research in Mechanical Engineering ; Volume 8, Issue 1 , 2018 , Pages 39-48 ; 22287922 (ISSN) Bostan Shirin, M ; Hashemi, R ; Assempour, A ; Sharif University of Technology
    Shahid Rajaee Teacher Tarining University (SRTTU)  2018
    Abstract
    An enhanced unfolding inverse finite element method (IFEM) is used together with an extended strain-based forming limit diagram (EFLD) to develop a fast and reliable approach to predict the feasibility of the deep drawing process of a part and determining where the failure or defects can occur. In the developed unfolding IFEM, the meshed part is properly fold out on the flat sheet and treated as a 2D problem to reduce the computation time. The large deformation relations, nonlinear material behavior and friction conditions in the blank holder zone are also considered to improve the accuracy and capability of the proposed IFEM. The extended strain-based forming limit diagram based on the... 

    Finding the optimum Hill index in the determination of the forming limit diagram

    , Article Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture ; Volume 223, Issue 7 , 2009 , Pages 943-946 ; 09544054 (ISSN) Assempour, A ; Hashemi, R ; Sharif University of Technology
    2009

    The strain gradient approach for determination of forming limit stress and strain diagrams

    , Article Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture ; Volume 222, Issue 4 , 2008 , Pages 467-483 ; 09544054 (ISSN) Safikhani, A. R ; Hashemi, R ; Assempour, A ; Sharif University of Technology
    2008
    Abstract
    The forming limit stress diagram (FLSD) has been reported as being much less path dependent and much more favourable than the forming limit diagram (FLD) in representing forming limits in the numerical simulation of sheet metal forming processes. Therefore, the purpose of this study was to develop a methodology for the prediction of the forming limits both in strain and stress forms. All simulations are based on strain gradient theory of plasticity in conjunction with the Marciniak-Kuczynski (M-K) approach. This approach introduces an internal length scale into conventional constitutive equations and takes into account the effects of deformation inhomogeneity and material softening. The... 

    Vibration-based identification of impact force using genetic algorithm

    , Article 2nd International Operational Modal Analysis Conference, IOMAC 2007, Copenhagen, 30 April 2007 through 2 May 2007 ; 2007 ; 9788791606144 (ISBN) Poursamad, A ; Hashemi, R ; Sharif University of Technology
    Aalborg University  2007
    Abstract
    Presented within this paper is the identification of impact force acting on a simply supported beam. The force identification is an inverse problem in which the measured response of the structure is used to determine the applied force. The identification problem is formulated as an optimization problem and genetic algorithm is utilized to solve the optimization problem. The objective function is calculated on the difference between analytical and measured responses and the decision variables are the location and magnitude of the applied force. The results from simulation show the effectiveness of the approach and its robustness to the measurement noise and sensor location  

    Electroelastic analysis of FG piezoelectric structures under thermo-electro-mechanical loadings

    , Article Mechanics of Advanced Materials and Structures ; Volume 20, Issue 1 , 2013 , Pages 11-27 ; 15376494 (ISSN) Kargarnovin, M. H ; Hashemi, R ; Emami, A. A ; Sharif University of Technology
    2013
    Abstract
    An exact planar solution for the determination of electroelastic responses are presented for functionally graded piezoelectricmaterials (FGPMs). The electro-mechanical properties are assumed to vary exponentially. Exploiting the potential functions for stress and induction, the governing equations reduce to systems of fourth order inhomogeneous partial differential equations (PDEs), which are solved in a closed form manner. Validity of the obtained solution is checked by other existing results in the literatures. Several examples are provided under distinctive thermo-electro-mechanical loadings. Finally, the effect of the graded indices is examined upon the electroelastic response of the FGP... 

    Axisymmetric thermo-electro-elastic analysis of a piezoelectric half space

    , Article Mathematics and Mechanics of Solids ; Volume 17, Issue 5 , September , 2012 , Pages 500-515 ; 10812865 (ISSN) Kargarnovin, M. H ; Hashemi, R ; Hashemi, M ; Sadeghi, H ; Sharif University of Technology
    2012
    Abstract
    In this study, an analytical solution is presented for thermo-electro- elastic analysis of piezoelectric semi-infinite bodies. For this purpose, governing equations are derived for a transversely isotropic piezoelectric material under an axisymmetric thermo-electro-mechanical loading condition. A general closed-form analytical solution is presented for the complementary and particular parts of the components of the displacement vector and also for the electric potential function. Then, boundary conditions are imposed and in that case an explicit solution is obtained for piezoelectric semi-infinite bodies. Results show that when a piezoelectric half space is subjected to constant/ramp surface... 

    A general treatment of piezoelectric double-inhomogeneities and their associated interaction problems

    , Article Acta Mechanica ; Volume 220, Issue 1-4 , 2011 , Pages 167-182 ; 00015970 (ISSN) Kargarnovin, M. H ; Shodja, H. M ; Hashemi, R ; Sharif University of Technology
    2011
    Abstract
    The present paper addresses an analytical method to determine the electroelastic fields over a double-phase piezoelectric reinforcement interacting with an ellipsoidal single-inhomogeneity. The approach is based on the extension of the electro-mechanical equivalent inclusion method (EMEIM) to the piezoelectric double-inhomogeneity system. Accordingly, the double-inhomogeneity is replaced by an electroelastic double-inclusion problem with proper polynomial eigenstrains-electric fields. The long- and short-range interaction effects are intrinsically incorporated by the homogenizing eigenfields. The equivalent double-inclusion is subsequently decomposed to the single-inclusion problems by means... 

    Electroelastic fields in interacting piezoelectric inhomogeneities by the electromechanical equivalent inclusion method

    , Article Smart Materials and Structures ; Volume 19, Issue 3 , 2010 ; 09641726 (ISSN) Shodja, H. M ; Kargarnovin, M. H ; Hashemi, R ; Sharif University of Technology
    2010
    Abstract
    Consider two piezoelectric ellipsoidal inhomogeneities of arbitrary size, orientation and material constants, which in turn are surrounded by an infinite isotropic medium. The system under consideration is subjected to far-field non-uniform electromechanical loadings. Based on the extension of the electromechanical equivalent inclusion method (EMEIM), the present paper develops a unified solution for determination of the associated electroelastic fields in the vicinity of interacting inhomogeneities. Accordingly, each of the piezoelectric inhomogeneities is broken down into two equivalent inclusions with proper polynomial eigenstrains and eigenelectric fields. The robustness and efficacy of... 

    Formability of tri-layered IF240/AZ31/IF240 composite with strong bonding: experimental and finite element modeling

    , Article Journal of Materials Engineering and Performance ; Volume 30, Issue 11 , 2021 , Pages 8402-8411 ; 10599495 (ISSN) Abedi, R ; Akbarzadeh, A ; Hadiyan, B ; Hashemi, R ; Sharif University of Technology
    Springer  2021
    Abstract
    In this work, the formability of a hybrid material of Interstitial-Free 240 (IF240) steel and AZ31 magnesium alloy as IF240/AZ31/IF240 tri-layered sheets was investigated. For this purpose, the bonding feasibility of the high-formability IF240 steel and low-formability AZ31 sheets was first assessed. Then, the hot formability behavior of the manufactured laminated composite was evaluated. The rolling of the preheated samples established the layer bonding. The bonding strength was determined using the shear punch test. The texture and its effects on the forming behavior were studied using the x-ray Goniometry method. Nakazima dome tests were employed at ambient and elevated temperatures to... 

    Formability of Tri-layered IF240/AZ31/IF240 composite with strong bonding: Experimental and finite element modeling

    , Article Journal of Materials Engineering and Performance ; Volume 30, Issue 11 , 2021 , Pages 8402-8411 ; 10599495 (ISSN) Abedi, R ; Akbarzadeh, A ; Hadiyan, B ; Hashemi, R ; Sharif University of Technology
    Springer  2021
    Abstract
    In this work, the formability of a hybrid material of Interstitial-Free 240 (IF240) steel and AZ31 magnesium alloy as IF240/AZ31/IF240 tri-layered sheets was investigated. For this purpose, the bonding feasibility of the high-formability IF240 steel and low-formability AZ31 sheets was first assessed. Then, the hot formability behavior of the manufactured laminated composite was evaluated. The rolling of the preheated samples established the layer bonding. The bonding strength was determined using the shear punch test. The texture and its effects on the forming behavior were studied using the x-ray Goniometry method. Nakazima dome tests were employed at ambient and elevated temperatures to... 

    Exact electroelastic field of a functionally graded piezoelectric cantilever beam subjected to pure body force loading

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010 ; Volume 2 , 2010 , Pages 45-52 ; 9780791849163 (ISBN) Emami, A. A ; Hashemi, R ; Kargarnovin, M. H ; Naghdabadi, R ; Sharif University of Technology
    Abstract
    The electroelastic response of functionally graded piezoelectric cantilever beams which includes the effect of body force is presented in this paper. The material properties such as elastic compliance, piezoelectric and dielectric impermeability are assumed to be graded with different indices in the thickness direction according to exponential distributions. Systems of fourth order inhomogeneous partial differential equations (PDEs) which are satisfied by the stress and induction functions and involve the body force terms are derived. Spectral forms for electrical and mechanical variables in the x-axis are employed to convert the partial differential governing equations and the associated... 

    Ellipsoidal domain with piecewise nonuniform eigenstrain field in one of joined isotropic half-spaces

    , Article Journal of Elasticity ; Volume 98, Issue 2 , 2010 , Pages 117-140 ; 03743535 (ISSN) Avazmohammadi, R ; Hashemi, R ; Shodja, H. M ; Kargarnovin, M. H ; Sharif University of Technology
    2010
    Abstract
    Consider an arbitrarily oriented ellipsoidal domain near the interface of an isotropic bimaterial space. It is assumed that a general class of piecewise nonuniform dilatational eigenstrain field is distributed within the ellipsoidal domain. Two theorems relevant to prediction of the nature of the induced displacement field for the interior and exterior points of the ellipsoidal domain are stated and proved. As a resultant the exact analytical expression of the elastic fields are obtained rigorously. In this work a new Eshelby-like tensor, A is introduced. In particular, the closed-form expressions for A associated with the interior points of spherical and cylindrical inclusion are derived.... 

    Enhancing the mechanical properties and formability of low carbon steel with dual-phase microstructures

    , Article Journal of Materials Engineering and Performance ; Volume 25, Issue 2 , 2016 , Pages 382-389 ; 10599495 (ISSN) Habibi, M ; Hashemi, R ; Sadeghi, E ; Fazaeli, A ; Ghazanfari, A ; Lashini, H ; Sharif University of Technology
    Springer New York LLC 
    Abstract
    In the present study, a special heat treatment cycle (step quenching) was used to produce a dual-phase (DP) microstructure in low carbon steel. By producing this DP microstructure, the mechanical properties of the investigated steel such as yield stress, tensile strength, and Vickers hardness were increased 14, 55, and 38%, respectively. In order to investigate the effect of heat treatment on formability of the steel, Nakazima forming test was applied and subsequently finite element base modeling was used to predict the outcome on forming limit diagrams. The results show that the DP microstructure also has a positive effect on formability. The results of finite element simulations are in a... 

    An analytical approach in prediction of necking and suitable load path in tube hydroforming by using the strain gradient

    , Article SAE Technical Papers, 20 April 2009 through 20 April 2009, Detroit, MI ; 2009 Assempour, A ; Masoumi, E ; Safikhani, A. R ; Hashemi, R ; Abrinia, K ; Sharif University of Technology
    Abstract
    A theoretical forming limit stress diagram (FLSD) for necking prediction which is based on the strain gradient theory of plasticity in conjunction with the M-K approach was represented and used in tube hydroforming. This approach introduces an internal length scale into conventional constitutive equations and takes into account the effects of deformation inhomogeneity and material softening. The nonlinear second order ordinary differential equation of the thickness of tube has been solved by collocation method. It has been shown that this method overcomes the imperfection sensitivity encountered in the conventional M-K method. The predicted FLSD has been compared with published experimental... 

    Forming limit diagrams by including the M–K model in finite element simulation considering the effect of bending

    , Article Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications ; Volume 232, Issue 8 , 2018 , Pages 625-636 ; 14644207 (ISSN) Habibi, M ; Hashemi, R ; Ghazanfari, A ; Naghdabadi, R ; Assempour, A ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    Forming limit diagram is often used as a criterion to predict necking initiation in sheet metal forming processes. In this study, the forming limit diagram was obtained through the inclusion of the Marciniak–Kaczynski model in the Nakazima out-of-plane test finite element model and also a flat model. The effect of bending on the forming limit diagram was investigated numerically and experimentally. Data required for this simulation were determined through a simple tension test in three directions. After comparing the results of the flat and Nakazima finite element models with the experimental results, the forming limit diagram computed by the Nakazima finite element model was more convenient... 

    Experimental investigation of mechanical properties, formability and forming limit diagrams for tailor-welded blanks produced by friction stir welding

    , Article Journal of Manufacturing Processes ; Volume 31 , 2018 , Pages 310-323 ; 15266125 (ISSN) Habibi, M ; Hashemi, R ; Fallah Tafti, M ; Assempour, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this study, the mechanical properties, formability and forming limit diagrams (FLDs) of the tailor-welded blanks (TWBs) produced by friction stir welding (FSW) were analyzed experimentally. At first, the suitable FSW parameters were achieved. The formability and FLDs of TWBs were evaluated for sheets with the same or different thicknesses and compared to the base metal sheet. This study was performed on low carbon steel (St14) sheets with a lot of applications in automobile industries. The welded zone properties were evaluated by some experiments. The tensile test, micro hardness testing, and metallographic studies were done. The effect of welding seam directions on formability and FLD... 

    Prediction of FLD for sheet metal by considering through-thickness shear stresses

    , Article Mechanics Based Design of Structures and Machines ; 2019 ; 15397734 (ISSN) Ghazanfari, A ; Soleimani, S. S ; Keshavarzzadeh, M ; Habibi, M ; Assempuor, A ; Hashemi, R ; Sharif University of Technology
    Taylor and Francis Inc  2019
    Abstract
    In this study, the effect of through-thickness shear (TTS) stress has been examined on the prediction of forming limit diagrams (FLDs). Determination of the FLD is based on the Marciniak–Kuczynski (M–K) model with some modifications on the stress states for consideration of the TTS stress effects. For solving the equations, the Newton–Raphson method has been used. Furthermore, the Nakazima test has been simulated to investigate the stress state which occurs in the sheet during the test. Results showed that the formability of sheet metal could be better as the through-thickness stress increased. Also, implementation of TTS stress in the present model, the corresponding FLD has better... 

    Finite element and experimental method for analyzing the effects of martensite morphologies on the formability of DP steels

    , Article Mechanics Based Design of Structures and Machines ; 2019 ; 15397734 (ISSN) Alipour, M ; Torabi, M. A ; Sareban, M ; Lashini, H ; Sadeghi, E ; Fazaeli, A ; Habibi, M ; Hashemi, R ; Sharif University of Technology
    Taylor and Francis Inc  2019
    Abstract
    In this article, we investigated the effect of martensite morphology on the mechanical properties and formability of dual phase steels. At first, three heat treatment cycles were subjected to a low-carbon steel to produce ferrite–martensite microstructure with martensite morphology of blocky-shaped, continuous, and fibrous. Tensile tests were then carried out so as to study mechanical properties, particularly the strength and strain hardening behavior of dual phase steels. In order to study the formability of dual phase samples, Forming Limit Diagram was obtained experimentally and numerically. Experimental forming limit diagram was obtained using Nakazima forming test, while Finite Element... 

    Prediction of FLD for sheet metal by considering through-thickness shear stresses

    , Article Mechanics Based Design of Structures and Machines ; 2019 ; 15397734 (ISSN) Ghazanfari, A ; Soleimani, S. S ; Keshavarzzadeh, M ; Habibi, M ; Assempuor, A ; Hashemi, R ; Sharif University of Technology
    Taylor and Francis Inc  2019
    Abstract
    In this study, the effect of through-thickness shear (TTS) stress has been examined on the prediction of forming limit diagrams (FLDs). Determination of the FLD is based on the Marciniak–Kuczynski (M–K) model with some modifications on the stress states for consideration of the TTS stress effects. For solving the equations, the Newton–Raphson method has been used. Furthermore, the Nakazima test has been simulated to investigate the stress state which occurs in the sheet during the test. Results showed that the formability of sheet metal could be better as the through-thickness stress increased. Also, implementation of TTS stress in the present model, the corresponding FLD has better...