Loading...
Search for: heidari--m
0.007 seconds
Total 23 records

    Neural fields with fast learning dynamic kernel

    , Article Biological Cybernetics ; Volume 106, Issue 1 , January , 2012 , Pages 15-26 ; 03401200 (ISSN) Abbassian, A. H ; Fotouhi, M ; Heidari, M ; Sharif University of Technology
    Abstract
    We introduce a modified-firing-rate model based on Hebbian-type changing synaptic connections. The existence and stability of solutions such as rest state, bumps, and traveling waves are shown for this type of model. Three types of kernels, namely exponential, Mexican hat, and periodic synaptic connections, are considered. In the former two cases, the existence of a rest state solution is proved and the conditions for their stability are found. Bump solutions are shown for two kinds of synaptic kernels, and their stability is investigated by constructing a corresponding Evans function that holds for a specific range of values of the kernel coefficient strength (KCS). Applying a similar... 

    Continuous neural network with windowed Hebbian learning

    , Article Biological Cybernetics ; Volume 109, Issue 3 , June , 2015 , Pages 321-332 ; 03401200 (ISSN) Fotouhi, M ; Heidari, M ; Sharifitabar, M ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    We introduce an extension of the classical neural field equation where the dynamics of the synaptic kernel satisfies the standard Hebbian type of learning (synaptic plasticity). Here, a continuous network in which changes in the weight kernel occurs in a specified time window is considered. A novelty of this model is that it admits synaptic weight decrease as well as the usual weight increase resulting from correlated activity. The resulting equation leads to a delay-type rate model for which the existence and stability of solutions such as the rest state, bumps, and traveling fronts are investigated. Some relations between the length of the time window and the bump width is derived. In... 

    Nanoscale graphene oxide sheets as highly efficient carbocatalysts in green oxidation of benzylic alcohols and aromatic aldehydes

    , Article Cuihua Xuebao/Chinese Journal of Catalysis ; Volume 38, Issue 4 , 2017 , Pages 745-757 ; 02539837 (ISSN) Sedrpoushan, A ; Heidari, M ; Akhavan, O ; Sharif University of Technology
    Science Press  2017
    Abstract
    Nanoscale graphene oxide (NGO) sheets were synthesized and used as carbocatalysts for effective oxidation of benzylic alcohols and aromatic aldehydes. For oxidation of alcohols in the presence of H2O2 at 80 °C, the NGOs (20% mass fraction) as carbocatalysts showed selectivity toward aldehyde. The rate and yield of this reaction strongly depended on the nature of substituents on the alcohol. For 4-nitrobenzyl alcohol, <10% of it was converted into the corresponding carboxylic acid after 24 h. By contrast, 4-methoxybenzyl alcohol and diphenylmethanol were completely converted into the corresponding carboxylic acid and ketone after only 9 and 3 h, respectively. The conversion rates for... 

    Numerical analysis and monitoring of an embankment dam during construction and first impounding case study: siah sang dam

    , Article Scientia Iranica ; Volume 25, Issue 2A , 2018 , Pages 505-516 ; 10263098 (ISSN) Rashidi, M ; Heidari, M ; Azizyan, Gh ; Sharif University of Technology
    Sharif University of Technology  2018
    Abstract
    Monitoring embankment dams is of crucial importance. In earth dams, the pore pressures, earth pressures, and displacements occurring during construction and function are measured at the time of the first impounding and exploitation by installing essential instruments, and so the dam's performance is evaluated and analyzed. Scope of the present research is the evaluation of Siah-Sang Dam performance through the results of instruments and back analysis, conducted by FLAC software. The Mohr-Coulomb elasticplastic model has been considered as the behavioral model of the dam, and the effect of the upstream shell's materials deformation has been modeled at the time of the initial impounding.... 

    Comparison of hydrogen permeation and structural properties of a microporous silica membrane and a dense BaCe0.9Y0.1O3-δ (BCY) perovskite membrane

    , Article Results in Materials ; Volume 15 , 2022 ; 2590048X (ISSN) Amanipour, M ; Heidari, M ; Walberg, M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Silica composite membranes and BaCe0.9Y0.1O3-δ (BCY) perovskite membranes were successfully synthesized to separate hydrogen in an equimolar mixture of H2, CH4, CO, and CO2 at temperature range of 500–900 °C and pressure difference of 1 bar. The phase structure of both membranes was characterized by X-ray diffraction (XRD). Thermogravimetric analysis (TGA) was used to evaluate phase stability of perovskite membrane. FESEM images confirmed graded structure of silica membrane and uniform, dense structure of perovskite membrane. H2 permeation in semi-dense silica layer deposited on alumina substrate indicated that permeation in top selective layer follows a diffusion mechanism which is based on... 

    Towards higher detection accuracy in blind steganalysis of JPEG images

    , Article 24th Iranian Conference on Electrical Engineering, ICEE 2016, 10 May 2016 through 12 May 2016 ; 2016 , Pages 1860-1864 ; 9781467387897 (ISBN) Zohourian, M ; Heidari, M ; Ghaemmaghami, S ; Gholampour, I ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    A new steganalysis system for JPG-based image data hiding is proposed in this paper. We use features extracted from both wavelet and DCT domains that are refined later in the sense of utmost discrimination between the clear and stego images in the classification system. Statistical properties of the SVD of wavelet sub-bands are combined with the extended DCT-Markov features, and the features that are most sensitive to the data embedding are chosen through a SVM-RFE based selection algorithm. Experimental results show significant improvement over baseline methods, especially for steganalysis of Perturbed Quantization (PQ), which is known to be one of most secure JPG-based steganography... 

    Multi-period lot sizing and job shop scheduling with compressible process times for multilevel product structures

    , Article International Journal of Production Research ; Volume 51, Issue 20 , 2013 , Pages 6229-6246 ; 00207543 (ISSN) Karimi Nasab, M ; Seyedhoseini, S. M ; Modarres, M ; Heidari, M ; Sharif University of Technology
    2013
    Abstract
    This paper presents mathematical modelling of joint lot sizing and scheduling problem in job shop environment under a set of working conditions. The main feature of the problem is to deal with flexible machines able to change their working speeds, known as process compressibility. Furthermore, produced items should be assembled together to make final products. In other words, the products have a multilevel structure, shown with bill of materials. As the problem is proved to be strongly NP-hard, it is solved by a memetic algorithm here. Computational experiences on the data of Mega Motor company are reported. Also, further experiences on random test data confirm the performance of the... 

    Confinement dynamics of a semiflexible chain inside nano-spheres

    , Article Journal of Chemical Physics ; Volume 139, Issue 4 , 2013 ; 00219606 (ISSN) Fathizadeh, A ; Heidari, M ; Eslami Mossallam, B ; Ejtehadi, M. R ; Sharif University of Technology
    2013
    Abstract
    We study the conformations of a semiflexible chain, confined in nano-scaled spherical cavities, under two distinct processes of confinement. Radial contraction and packaging are employed as two confining procedures. The former method is performed by gradually decreasing the diameter of a spherical shell which envelopes a confined chain. The latter procedure is carried out by injecting the chain inside a spherical shell through a hole on the shell surface. The chain is modeled with a rigid body molecular dynamics simulation and its parameters are adjusted to DNA base-pair elasticity. Directional order parameter is employed to analyze and compare the confined chain and the conformations of the... 

    Effect of CVD parameters on hydrogen permeation properties in a nano-composite SiO 2-Al 2O 3 membrane

    , Article Journal of Membrane Science ; Volume 423-424 , 2012 , Pages 530-535 ; 03767388 (ISSN) Amanipour, M ; Ganji Babakhani, E ; Safekordi, A ; Zamaniyan, A ; Heidari, M ; Sharif University of Technology
    2012
    Abstract
    Tubular ceramic membranes were synthesized by depositing a dense layer of silica-alumina on top of a multilayer substrate using co-current chemical vapor deposition (CVD) method. The multilayer substrate was prepared by coating with a series of bohemite sols with certain particle sizes. Cross-sectional and surface images obtained from high resolution FESEM showed that the intermediate layer had a thickness of about 1μm and the top selective layer was uniform and dense with a thickness of less than 100nm. Permeance tests, which were carried out with H 2, CO 2, N 2 and CH 4 at a high temperature range of 923-1073K, indicated that gas permeation took place via different mechanisms through... 

    Preparation and performance evaluation of a Nano-composite silica membrane for high temperature gas separation

    , Article CHISA 2012 - 20th International Congress of Chemical and Process Engineering and PRES 2012 - 15th Conference PRES ; 2012 Safekordi, A ; Amanipour, M ; Heidari, M ; Ganji Babakhani, E ; Ordookhani, G ; Sharif University of Technology
    2012
    Abstract
    Multi-layer ceramic membranes were prepared and used for hydrogen separation at high operating temperatures. The membranes were formed by depositing nano-scale, dense silica layers with a thickness of 80-90 nm on top of porous alumina substrates by atmospheric CVD method. The substrates were prepared by dipping macroporous α-alumina supports with three size-controlled boehmite solutions to obtain a graded structure. Permeation tests were performed at 800°C for single gases of H2, N2, CH4, and CO2. Hydrogen selectivity values of 100, 350, and 780 were obtained as the ratio of H2 permeation flux over CH4, N2, and CO2, respectively. This is an abstract of a paper presented at the CHISA 2012 -... 

    Effect of synthesis conditions on performance of a hydrogen selective nano-composite ceramic membrane

    , Article International Journal of Hydrogen Energy ; Volume 37, Issue 20 , October , 2012 , Pages 15359-15366 ; 03603199 (ISSN) Amanipour, M ; Safekordi, A ; Ganji Babakhani, E ; Zamaniyan, A ; Heidari, M ; Sharif University of Technology
    Elsevier  2012
    Abstract
    A hydrogen-selective nano-composite ceramic membrane was prepared by depositing a dense layer composed of SiO2 and Al2O 3 on top of a graded multilayer substrate using co-current chemical vapor deposition (CVD) method. The multilayer substrate was made by dip-coating a macroporous α-alumina tubular support by a series of boehmite solutions to get a graded structure. Using DLS analysis, it was concluded that decreasing hydrolysis time and increasing acid concentration lead to smaller particle size of boehmite sols. XRD analysis was carried out to investigate the structure of intermediate layer and an optimized calcination temperature of 973 K was obtained. SEM images indicated the formation... 

    Performance of a nickel-alumina catalytic layer for simultaneous production and purification of hydrogen in a tubular membrane reactor

    , Article RSC Advances ; Volume 6, Issue 79 , 2016 , Pages 75686-75692 ; 20462069 (ISSN) Amanipour, M ; Towfighi, J ; Zamaniyan, A ; Ganji Babakhani, E ; Heidari, M ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    A catalytic membrane reactor was synthesized by coating a 4-5 micron thick Ni/γ-Al2O3 layer on top of a hydrogen selective SiO2/Al2O3 composite membrane using a sol-gel method. Mercury intrusion and BET analysis indicated a uniform size distribution with an average pore size of 285 nm and average surface area of 279 m2 g-1. Single-component permeation tests were carried out for H2, CH4 and CO2 in the temperature range of 650-800 °C and the results showed the same permeance and selectivity values for hydrogen as the composite membrane without a catalytic layer. Performance of the catalytic membrane was evaluated by using as a membrane reactor for the methane steam reforming reaction with a... 

    A multiscale agent-based framework integrated with a constraint-based metabolic network model of cancer for simulating avascular tumor growth

    , Article Molecular BioSystems ; Volume 13, Issue 9 , 2017 , Pages 1888-1897 ; 1742206X (ISSN) Ghadiri, M ; Heidari, M ; Marashi, S. A ; Mousavi, S. H ; Sharif University of Technology
    Royal Society of Chemistry  2017
    Abstract
    In recent years, many efforts have been made in the field of computational modeling of cancerous tumors, in order to obtain a better understanding and predictions of their growth patterns. Furthermore, constraint-based modeling of metabolic networks has become increasingly popular, which is appropriate for the systems-level reconstruction of cell physiology. The goal of the current study is to integrate a multiscale agent-based modeling framework with a constraint-based metabolic network model of cancer cells in order to simulate the three dimensional early growth of avascular tumors. In order to develop the integrated model, a previously published generic metabolic network model of cancer... 

    Study of microstructural evolution and phase's morphology after partial remelting in A356 alloy

    , Article Semi-Solid Processing of Alloys and Composites 10 - Selected, peer reviewed papers from the 10th International Conference on Semi-Solid Processing of Alloy and Composites, S2P 2008, Aachen, 16 September 2008 through 18 September 2008 ; Volume 141-143 , 2008 , Pages 367-372 ; 10120394 (ISSN); 9771012039401 (ISBN) Mahdavi, A ; Bigdeli, M ; Hajian Heidary, M ; Khomamizadeh, F ; Sharif University of Technology
    Trans Tech Publications Ltd  2008
    Abstract
    In this work, effective parameters of SIMA process to obtain non dendritic microstructure in A356 alloy were investigated. In addition, the effect of SIMA process on the evolution of morphology of silicon and intermetallic phases in this alloy was studied. Microstructure images obtained from optical microscopy and SEM observation showed that increase in plastic work up to 40% and then holding of samples in the semi solid state at temperature of 580°C, causes that primary dendritic structure changes to non dendritic, fine and globular structure, but optimum reheating time completely depended on initial thickness of samples. If all parameters of SIMA process are the same, the grain boundaries... 

    Data envelopment analysis based comparison of two hybrid multi-criteria decision-making approaches for mobile phone selection: a case study in Iranian telecommunication environment

    , Article International Journal of Information and Decision Sciences ; Volume 1, Issue 2 , 2008 , Pages 194-220 ; 17567017 (ISSN) Mahdavi, I ; Fazlollahtabar, H ; Mozaffari, E ; Heidari, M ; Mahdavi Amiri, N ; Sharif University of Technology
    2008
    Abstract
    The arrival of the mobile phone and its rapid and widespread growth may well be seen as one of the most significant developments in the fields of communication and information technology over the past two decades. The aim of this study is to compare two hybrid multi-criteria decision-making (MCDM) approaches to evaluate the mobile phone options with respect to user’s preferences. Firstly, we identify the most desirable features influencing the choice of a mobile phone. This is realised through a survey conducted among the target group, the experiences of the telecommunication sector experts and the studies in the literature. Secondly, two MCDM methods are used in the evaluation procedure.... 

    Flow measurements around a long axisymmetric body with varying cross section

    , Article 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 10 January 2005 through 13 January 2005 ; 2005 , Pages 7221-7233 Soltani, M. R ; Taeibi Rahni, M ; Farahani, M ; Heidari, M. R ; Sharif University of Technology
    2005
    Abstract
    Supersonic flow over tapered bodies of revolution is investigated using both experimental and numerical methods. The experimental study consisted of a series of wind tunnel tests on an ogive-cylinder body and included the surface static pressure and boundary layer profiles measurements, at various angles of attack. Further, the flow around the model was visualized using Schlieren technique. All tests were conducted in the trisonic wind tunnel of Qadr Research Center, Iran. Static surface pressure results show that the circumferential pressure at different nose sections vary significantly with angles of attack, in contrast to the circumferential pressure signatures along the cylindrical part... 

    Effect of nanofluid treatment on water sensitive formation to investigate water shock phenomenon, an experimental study

    , Article Journal of Dispersion Science and Technology ; Volume 35, Issue 7 , 21 May 2014 , Pages 889-897 Habibi, A ; Heidari, M. A ; Al-Hadrami, H ; Al-Ajmi, A ; Al-Wahaibi, Y ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    Permeability reduction in porous media as a result of frail and tenuous fine particles migration would decrease the productivity index in the subterranean reservoirs. During reservoir stimulation by injecting fluids into the reservoir, as the salinity condition of the formation brine changes, fine particles initiate the triggering process. In this study, MgO-based nanofluid as a fines fixation agent was stably prepared based on the particle size distribution and characterized through transmission electron microscopy analysis. Afterward, several core flooding tests were performed using Berea sandstone cores to study the effect of nanofluid injection on fines fixation in the water shock... 

    Novel high-performance nanocomposite proton exchange membranes based on poly (ether sulfone)

    , Article Renewable Energy ; Volume 35, Issue 1 , 2010 , Pages 226-231 ; 09601481 (ISSN) Hasani-Sadrabadi, M.M ; Dashtimoghadam, E ; Ghaffarian, S.R ; Hasani Sadrabadi, M.H ; Heidari, M ; Moaddel, H ; Sharif University of Technology
    2010
    Abstract
    In the present research, proton exchange membranes based on partially sulfonated poly (ether sulfone) (S-PES) with various degrees of sulfonation were synthesized. It was found that the increasing of sulfonation degree up to 40% results in the enhancement of water uptake, ion exchange capacity and proton conductivity properties of the prepared membranes to 28.1%, 1.59 meq g -1, and 0.145 S cm -1, respectively. Afterwards, nanocomposite membranes based on S-PES (at the predetermined optimum sulfonation degree) containing various loading weights of organically treated montmorillonite (OMMT) were prepared via the solution intercalation technique. X-ray diffraction patterns revealed the... 

    Topology of polymer chains under nanoscale confinement

    , Article Nanoscale ; Volume 9, Issue 33 , 2017 , Pages 12170-12177 ; 20403364 (ISSN) Satarifard, V ; Heidari, M ; Mashaghi, S ; Tans, S ; Ejtehadi, M. R ; Mashaghi, A ; Sharif University of Technology
    Abstract
    Spatial confinement limits the conformational space accessible to biomolecules but the implications for bimolecular topology are not yet known. Folded linear biopolymers can be seen as molecular circuits formed by intramolecular contacts. The pairwise arrangement of intra-chain contacts can be categorized as parallel, series or cross, and has been identified as a topological property. Using molecular dynamics simulations, we determine the contact order distributions and topological circuits of short semi-flexible linear and ring polymer chains with a persistence length of lp under a spherical confinement of radius Rc. At low values of lp/Rc, the entropy of the linear chain leads to the... 

    Development of a virtual cell model to predict cell response to substrate topography

    , Article ACS Nano ; Volume 11, Issue 9 , 2017 , Pages 9084-9092 ; 19360851 (ISSN) Heydari, T ; Heidari, M ; Mashinchian, O ; Wojcik, M ; Xu, K ; Dalby, M. J ; Mahmoudi, M ; Ejtehadi, M. R ; Sharif University of Technology
    Abstract
    Cells can sense and respond to changes in the topographical, chemical, and mechanical information in their environment. Engineered substrates are increasingly being developed that exploit these physical attributes to direct cell responses (most notably mesenchymal stem cells) and therefore control cell behavior toward desired applications. However, there are very few methods available for robust and accurate modeling that can predict cell behavior prior to experimental evaluations, and this typically means that many cell test iterations are needed to identify best material features. Here, we developed a unifying computational framework to create a multicomponent cell model, called the...