Loading...
Search for: hosseini--s--a
0.01 seconds
Total 33 records

    Fabrication of porous NiTi-shape memory alloy objects by partially hydrided titanium powder for biomedical applications

    , Article Materials and Design ; Volume 30, Issue 10 , 2009 , Pages 4483-4487 ; 02641275 (ISSN) Sadrnezhaad, S. K ; Hosseini, S. A ; Sharif University of Technology
    Abstract
    Porous NiTi-shape memory alloy (SMA) is a promising biomaterial with desirable mechanical property and appropriate biocompatibility for human implant manufacturing. In this research, porous NiTi-SMAs have been successfully produced by using thermohydrogen process (THP). This process has capability of production of homogenous structures, appropriate pore-size distributions and short sintering times. The THP-SMA samples produced in this research have a low Young's modulus (19.8 GPa) and a high tensile strength of 255 MPa. These properties are close to those of the natural bone and can meet the mechanical property demands of the hard-tissue implants for heavy load-bearing applications. The... 

    Extraction of theoretical equation for the gamma ray buildup factor of the three-layered spherical shield

    , Article Journal of Instrumentation ; Volume 14, Issue 4 , 2019 ; 17480221 (ISSN) Rabi'ee, A ; Hosseini, S. A ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    In the previous researches, several theoretical equations were presented for calculation of buildup factor of the single layer shields. Also, the theoretical equations were offered for the two-layered shield that consist of the known materials. For other possible modes of the multi-layered shield, the buildup factor are usually calculated via experimental or simulated data. The purpose of present study is the extraction of the new theoretical equation for the gamma ray buildup factor of three-layered spherical shield made of water, concrete and iron based on the Monte Carlo calculation. To this end, the gamma ray buildup factor of the three-layered spherical shield is calculated via... 

    Sensitivity analysis of the transmission factor and resolution of a multiblade neutron velocity selector to the various parameters

    , Article Radiation Physics and Chemistry ; Volume 177 , December , 2020 Moeini, H ; Hosseini, S. A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The neutron velocity selector is a device used to produce a monochromatic neutron beam with continuous flux. The purpose of the present study is to investigate the sensitivity of the transmission factor and resolution of a multiblade neutron velocity selector to the various parameters using the McStas software. To this end, two instruments were created using the Arm, Progress_bar, Source_simple, DivMonitor, L_monitor, Guide_channeled and V_selector components of the McStas software. The used V_selector component to simulate the multiblade neutron velocity selector was created by considering three assumptions: 1. The absorption of colliding neutrons to selector blades, 2. No interaction of... 

    Simulation of the multi-purpose gamma irradiator dose distribution based on the GEANT4 and GPU system

    , Article Journal of Instrumentation ; Volume 16, Issue 7 , 2021 ; 17480221 (ISSN) Razimanesh, M ; Hosseini, S. A ; Sharif University of Technology
    IOP Publishing Ltd  2021
    Abstract
    Gamma irradiation systems are used extensively in the industry in order to sterilize medical devices, disinfect hygienic products and increase the shelf life of agricultural products. The method of gamma irradiation is superior to the older methods of heat or chemical treatment because it is by far a simpler operation. In this method, only one parameter, the exposure time is controlled, whereas in the other mentioned methods five or six different parameters need to be controlled. The design of irradiation systems generally includes the size and the location of products, and the arrangement of source rack pencils. In order to optimize the design of the gamma irradiation systems, it is needed... 

    Error analysis of finite difference methods for two-dimensional advection-dispersion-reaction equation

    , Article Advances in Water Resources ; Volume 28, Issue 8 , 2005 , Pages 793-806 ; 03091708 (ISSN) Ataie Ashtiani, B ; Hosseini, S. A ; Sharif University of Technology
    2005
    Abstract
    In this paper, the numerical errors associated with the finite difference solutions of two-dimensional advection-dispersion equation with linear sorption are obtained from a Taylor analysis and are removed from numerical solution. The error expressions are based on a general form of the corresponding difference equation. The variation of these numerical truncation errors is presented as a function of Peclet and Courant numbers in X and Y direction, a Sink/Source dimensionless number and new form of Peclet and Courant numbers in X-Y plane. It is shown that the Crank-Nicolson method is the most accurate scheme based on the truncation error analysis. The effects of these truncation errors on... 

    Numerical errors of explicit finite difference approximation for two-dimensional solute transport equation with linear sorption

    , Article Environmental Modelling and Software ; Volume 20, Issue 7 , 2005 , Pages 817-826 ; 13648152 (ISSN) Ataie Ashtiani, B ; Hosseini, S. A ; Sharif University of Technology
    2005
    Abstract
    The numerical errors associated with explicit upstream finite difference solutions of two-dimensional advection - Dispersion equation with linear sorption are formulated from a Taylor analysis. The error expressions are based on a general form of the corresponding difference equation. The numerical truncation errors are defined using Peclet and Courant numbers in the X and Y direction, a sink/source dimensionless number and new Peclet and Courant numbers in the XY plane. The effects of these truncation errors on the explicit solution of a two-dimensional advection-dispersion equation with a first-order reaction or degradation are demonstrated by comparison with an analytical solution in... 

    Rapid quantitative elemental analysis using artificial neural network for case study of Isfahan Miniature Neutron Source Reactor

    , Article Journal of Radioanalytical and Nuclear Chemistry ; Volume 331, Issue 11 , 2022 , Pages 4479-4487 ; 02365731 (ISSN) Asgari, A ; Hosseini, S. A ; Sharif University of Technology
    Springer Science and Business Media B.V  2022
    Abstract
    In this study, new method for NAA purposes at 30 kW Isfahan MNSR is suggested. An algorithm based on ANN is proposed to quantitatively predict the unknown elements with no need standard sample. A three-layer feed-forward ANN with back-propagation algorithm has been used to determine concentration of selenium and fluorine in Multiple Sclerosis patients and healthy people blood samples. Predicted concentration of elements show good agreement between new method and experiment results. The correlation coefficient between the experimentally determined and predicted values are 0.99104 and 0.99364, respectively. This method is a rapid and precise approach for elemental analysis. © 2022, Akadémiai... 

    Investigation of segregation of large particles in a pressurized fluidized bed with a high velocity gas: A discrete particle simulation

    , Article Powder Technology ; Volume 246 , September , 2013 , Pages 398-412 ; 00325910 (ISSN) Alavi Shoushtari, N ; Hosseini, S. A ; Soleimani, R ; Sharif University of Technology
    2013
    Abstract
    A numerical study on mixing/segregation phenomena in a pressurized fluidized bed with large particles of Geldart D type of binary density but same diameter with high velocity gas was performed by the use of discrete particle simulation. Particle mixtures are composed of spherical particles with 2mm diameter and 1g/cm3 flotsam density and different jetsam densities of 1.25, 2 and 2.5g/cm3 with jetsam volume fraction of 0.5. The particles are initially packed approaching perfect mixing state in a rectangular bed and then fluidized by gas uniformly injected at the bottom of the bed. Effect of increase of pressure and density ratio was investigated and mixing/segregation behavior is discussed in... 

    Spatial-aware dictionary learning for hyperspectral image classification

    , Article IEEE Transactions on Geoscience and Remote Sensing ; Volume 53, Issue 1 , July , 2015 , Pages 527-541 ; 01962892 (ISSN) Soltani Farani, A ; Rabiee, H. R ; Hosseini, S. A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    This paper presents a structured dictionary-based model for hyperspectral data that incorporates both spectral and contextual characteristics of spectral samples. The idea is to partition the pixels of a hyperspectral image into a number of spatial neighborhoods called contextual groups and to model the pixels inside a group as members of a common subspace. That is, each pixel is represented using a linear combination of a few dictionary elements learned from the data, but since pixels inside a contextual group are often made up of the same materials, their linear combinations are constrained to use common elements from the dictionary. To this end, dictionary learning is carried out with a... 

    A new neutron energy spectrum unfolding code using a two steps genetic algorithm

    , Article Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment ; Volume 811 , 2016 , Pages 82-93 ; 01689002 (ISSN) Shahabinejad, H ; Hosseini, S. A ; Sohrabpour, M ; Sharif University of Technology
    Elsevier 
    Abstract
    A new neutron spectrum unfolding code TGASU (Two-steps Genetic Algorithm Spectrum Unfolding) has been developed to unfold the neutron spectrum from a pulse height distribution which was calculated using the MCNPX-ESUT computational Monte Carlo code. To perform the unfolding process, the response matrices were generated using the MCNPX-ESUT computational code. Both one step (common GA) and two steps GAs have been implemented to unfold the neutron spectra. According to the obtained results, the new two steps GA code results has shown closer match in all energy regions and particularly in the high energy regions. The results of the TGASU code have been compared with those of the standard... 

    Optimization of the marinelli beaker dimensions using genetic algorithm

    , Article Journal of Environmental Radioactivity ; Volume 172 , 2017 , Pages 81-88 ; 0265931X (ISSN) Zamzamian, S. M ; Hosseini, S. A ; Samadfam, M ; Sharif University of Technology
    Abstract
    A computational code, based on the genetic algorithm and MCNPX version 2.6 code was developed and used to investigate the effects of some important parameters of HPGe detector (such as Al cap thickness, dead-layer thickness and Ge hole size) on optimum dimensions of marinelli beaker. In addition, the effects of detector material on optimal beaker dimensions were also investigated. Finally, the optimized beaker dimensions at various beaker volumes (300, 500, 700, 1000 and 1500 cm3) were determined for some conventional Ge detectors with different crystal sizes (16 sizes). These sets of data then were used to drive mathematical formulas (obtained by best fitting to data sets). The results... 

    Experimental study of the effect of water to cement ratio on mechanical and durability properties of Nano-silica concretes with Polypropylene fibers

    , Article Scientia Iranica ; Volume 26, Issue 5 A , 2019 , Pages 1-18 ; 10263098 (ISSN) Rahmani, K ; Ghaemian, M ; Hosseini, S. A ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    In the present paper, the effect of Nano silica on mechanical properties and durability of concrete containing polypropylene fibers has been investigated. Here, the length and length to diameter ratio of used polypropylene fibers were considered to be fixed and equal to 18 mm and 600 respectively and the cement content was 479 kg/m3. The effect of fibers and Nano silica in four different percentages for each one at 0.1, 0.2, 0.3 and 0.4 percent by volume for fibers and 3 percent for Nano silica in concrete with water to cement ratio of 0.33, 0.36, 0.4, 0.44 and 0.5 have been compared and evaluated. In total, more than 425 cubic and cylindrical specimens were made according to ASTM standards.... 

    Porous shape memory dental implant by reactive sintering of TiH2–Ni-Urea mixture

    , Article Materials Science and Engineering C ; Volume 107 , 2020 Akbarinia, S ; Sadrnezhaad, S .K ; Hosseini, S. A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    We produced bifurcated bone-like shape memory implant (BL-SMI) with desirable tooth-root fixation capability by compact-sintering of TiH2–Ni-urea mixture. The primary constituents of the porous product were Ni and Ti. We could adjust the pores' shape, size, and interconnectivity for favorite bone ingrowth by using urea as a space holder. Without urea, we obtained an average porosity of 0.30, and a mean void size of 100 μm. With 70 vol % urea, we got 62% interconnected pores of 400 μm average size. Aging allowed us to tune the austenite-martensite transformation temperatures towards the needed body tissue arouse. Differential scanning calorimetry measured the transformation temperatures.... 

    Sensitivity analysis of the efficiency of Compton camera to the detector parameters using the GEANT4 computer code

    , Article Applied Radiation and Isotopes ; Volume 176 , 2021 ; 09698043 (ISSN) Niknami, M ; Hosseini, S. A ; Loushab, M. E ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Compton imaging is an imaging technique in which Compton scattering is used to produce images from a gamma-ray source. Compton imaging systems are also known as Compton camera. The basic design of Compton imaging systems consists of two-position detectors that are sensitive to the position and energy scattered from gamma rays. Compton camera efficiency is defined as the fraction of photons entering the scatterer (disperse) detector that undergoes only one Compton scattering and is then photoelectrically absorbed in the absorber detector. In the present study, the efficiency of a Compton camera was investigated based on semiconductor detectors using the GEANT4 simulation toolkit. In this... 

    A deep learning method for high-quality ultra-fast CT image reconstruction from sparsely sampled projections

    , Article Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment ; Volume 1029 , 2022 ; 01689002 (ISSN) Khodajou Chokami, H ; Hosseini, S. A ; Ay, M. R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Few-view or sparse-view computed tomography has been recently introduced as a great potential to speed up data acquisition and alleviate the amount of patient radiation dose. This study aims to present a method for high-quality ultra-fast image reconstruction from sparsely sampled projections to overcome problems of previous methods, missing and blurring tissue boundaries, low-contrast objects, variations in shape and texture between the images of different individuals, and their outcomes. To this end, a new deep learning (DL) framework based on convolution neural network (CNN) models is proposed to solve the problem of CT reconstruction under sparsely sampled data, named the multi-receptive... 

    PARS-NET: A novel deep learning framework using parallel residual conventional neural networks for sparse-view CT reconstruction

    , Article Journal of Instrumentation ; Volume 17, Issue 2 , 2022 ; 17480221 (ISSN) Khodajou Chokami, H ; Hosseini, S. A ; Ay, M. R ; Sharif University of Technology
    IOP Publishing Ltd  2022
    Abstract
    Sparse-view computed tomography (CT) is recently proposed as a promising method to speed up data acquisition and alleviate the issue of CT high dose delivery to the patients. However, traditional reconstruction algorithms are time-consuming and suffer from image degradation when faced with sparse-view data. To address this problem, we propose a new framework based on deep learning (DL) that can quickly produce high-quality CT images from sparsely sampled projections and is able for clinical use. Our DL-based proposed model is based on the convolution, and residual neural networks in a parallel manner, named the parallel residual neural network (PARS-Net). Besides, our proposed PARS-Net model... 

    Toward a predictive model for predicting viscosity of natural and hydrocarbon gases

    , Article Journal of Natural Gas Science and Engineering ; Volume 20 , September , 2014 , Pages 147-154 ; ISSN: 18755100 Yousefi, S. H ; Azamifard, A ; Hosseini, S. A ; Shamsoddini, M. J ; Alizadeh, N ; Sharif University of Technology
    Abstract
    Accurate knowledge of pure hydrocarbon and natural gas viscosity is essential for reliable reservoir characterization and simulation as well as economic design of natural gas processing and transport units. The most trustable sources of pure hydrocarbon and natural gas viscosity values are laboratory experiments. When there is no available experimental data for the required composition, pressure, and temperature conditions, the use of predictive methods becomes important. In this communication, a novel approach was proposed to develop for prediction of viscosity of pure hydrocarbons as well as gas mixtures containing heavy hydrocarbon components and impurities such as carbon dioxide,... 

    Synthesis of wide band gap nanocrystalline NiO powder via a sonochemical method

    , Article Ultrasonics Sonochemistry ; Volume 19, Issue 4 , 2012 , Pages 841-845 ; 13504177 (ISSN) Mohseni Meybodi, S ; Hosseini, S. A ; Rezaee, M ; Sadrnezhaad, S. K ; Mohammadyani, D ; Sharif University of Technology
    2012
    Abstract
    A sonochemistry-based synthesis method was used to produce nanocrystalline nickel oxide powder with ∼20 nm average crystallite diameter from Ni(OH)2 precursor. Ultrasound waves were applied to the primary solution to intensify the Ni(OH)2 precipitation. Dried precipitates were calcined at 320 °C to form nanocrystalline NiO particles. The morphology of the produced powder was characterized by transmission electron microscopy. Using sonochemical waves resulted in lowering of the size of the nickel oxide crystallites. FT-IR spectroscopy and X-ray diffraction revealed high purity well-crystallized structure of the synthesized powder. Photoluminescence spectroscopy confirmed production of a wide... 

    MCNP-FBSM: Development of MCNP/MCNPX Source Model for Simulation of Multi-Slice Fan-Beam X-Ray CT Scanners

    , Article 2019 IEEE International Symposium on Medical Measurements and Applications, MeMeA 2019, 26 June 2019 through 28 June 2019 ; 2019 ; 9781538684276 (ISBN) Khodajou Chokami, H ; Hosseini, S. A ; Reza Ay, M ; Zaidi, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Computed tomography (CT) is one of the most valuable diagnostic imaging tools in the clinic and is widely used worldwide. One of the main motivations driving research and development in CT is to achieve better image quality while keeping the radiation dose to the patient as low as possible. In this regard, computer simulations play a key role in the optimization of CT design. In this work, a fan-beam source model (FBSM) for the simulation of multi-slice fan-beam CT scanners using the MCNP Monte Carlo code, has been developed and implemented. The use of this model removes the need for using the collimator in the system configuration and thus to overcome the perennial problem of particle... 

    Determining of the optimized dimensions of the Marinelli beaker containing source with inhomogeneous emission rate by using genetic algorithm coupled with MCNP and determining distribution type by neural networks

    , Article Applied Radiation and Isotopes ; Volume 157 , 2020 Zamzamian, S. M ; Hosseini, S. A ; Feghhi, S. A ; Samadfam, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In order to determine the activity of C137s in soil resulting from nuclear accidents or fallouts, the best choice is to use HPGe detectors due to their best energy resolutions. In this regard, in order to enhance the detection efficiency, the Marinelli beakers have been used to increase the radiation interaction with the sensitive volume of the detector. In previous works, to optimize the dimension of Marinelli beakers, the assumption was that the emission rate of the source is homogeneous in beaker volume. In the present study, to investigate the effect of the inhomogeneous emission rate of the source on the optimum dimensions of the beaker, in a simple case, the beaker was divided into two...