Loading...
Search for: jamshidi--z
0.012 seconds
Total 24 records

    Passive position finding of stationary targets: Based on circulation and the least square concept

    , Article ISPACS 2012 - IEEE International Symposium on Intelligent Signal Processing and Communications Systems ; 2012 , Pages 390-394 ; 9781467350815 (ISBN) Ahmadian, A ; Mahdavi, A ; Jamshidi, Z ; Sharif University of Technology
    2012
    Abstract
    A method for two dimensional position finding of stationary targets whose bearing measurements suffers from indeterminable bias and random noise has been proposed. The algorithm uses convex optimization to minimize an error function which has been calculated based on circular as well as linear loci of error. Taking into account a number of observations, certain modifications have been applied to the initial crude method so as to arrive at a faster, more accurate method. Simulation results of the method illustrate up to 30% increase in accuracy compared with the well-known least square filter  

    Interaction of cations with 2′-deoxythymidine nucleoside and analysis of the nature and strength of cation bonds

    , Article Journal of Physical Organic Chemistry ; Volume 25, Issue 2 , JAN , 2012 , Pages 153-161 ; 08943230 (ISSN) Shakourian Fard, M ; Fattahi, A ; Jamshidi, Z ; Sharif University of Technology
    2012
    Abstract
    Binding of Mg 2+, Ca 2+, Zn 2+, and Cu + metal ions with 2′-deoxythymidine (dT) nucleoside was studied using a density functional theory method and a 6-311++G(d,p) basis set. This work demonstrated that the interaction of dT with these cations is tri-coordinated · (O2, O4′, O5′). Among the four types of cations, Zn 2+ cation exhibited the most tendency to interact with the dT. Cations via their interaction with dT can affect the N-glycosidic bond length, the values of pseudorotation of the sugar ring, the orientation of the base unit with respect to the sugar ring, and the acidity of the O5′H, O3′H, and N3H groups in the dT nucleoside. Natural bond orbital analysis was performed to calculate... 

    How do adsorbent orientation and direction of external electric field affect the charge-transfer surface-enhanced raman spectra?

    , Article Journal of Physical Chemistry C ; Volume 125, Issue 24 , 2021 , Pages 13382-13390 ; 19327447 (ISSN) Ashtari Jafari, S ; Jamshidi, Z ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Surface-enhanced Raman spectroscopy is a highly sensitive phenomenon and a powerful fingerprint detection tool that reflects the small changes in polarizability on the pattern and intensity of Raman signals. The SERS enhancement signals elucidate with the surface-selection rules. In this regard, molecular configuration and adsorption orientation on the surface, in addition to the direction of external electric field, can lead to different patterns of SERS spectra. To evaluate how the variation of these features influences the pattern and reproducibility of the spectra, the chemical charge-transfer SERS spectra for pyridine on silver clusters are calculated for different field directions,... 

    Efficient simulation of resonance Raman spectra with tight-binding approximations to density functional theory

    , Article Journal of Chemical Physics ; Volume 157, Issue 8 , Volume 157, Issue 8 , 2022 ; 00219606 (ISSN) Ashtari Jafari, S ; Jamshidi, Z ; Visscher, L ; Sharif University of Technology
    American Institute of Physics Inc  2022
    Abstract
    Resonance Raman spectroscopy has long been established as one of the most sensitive techniques for detection, structure characterization, and probing the excited-state dynamics of biochemical systems. However, the analysis of resonance Raman spectra is much facilitated when measurements are accompanied by Density Functional Theory (DFT) calculations that are expensive for large biomolecules. In this work, resonance Raman spectra are therefore computed with the Density Functional Tight-Binding (DFTB) method in the time-dependent excited-state gradient approximation. To test the accuracy of the tight-binding approximations, this method is first applied to typical resonance Raman benchmark... 

    Structural and electronic properties of alkyl-trifluoroborate based ionic liquids: A theoretical study

    , Article Journal of Fluorine Chemistry ; Volume 153 , September , 2013 , Pages 96-100 ; 00221139 (ISSN) Shakourian Fard, M ; Jamshidi, Z ; Bayat, A ; Fattahi, A ; Sharif University of Technology
    2013
    Abstract
    In this study, ionic liquids formed between 1-ethyl-3-methylimidazolium cation ([emim]+) and alkyltrifluoroborate ([RBF3]-, R = n-CmH2m+1 (m = 1-5)) anions have been investigated theoretically. The interactions between the cation and anions have also been calculated at the MP2/6-311++G(d,p)//B3LYP/6-311++G(d,p) level of theory. The calculated interaction energies were found to decrease in magnitude with the increase of side-chain length in anions. The results of energy decomposition analysis (EDA) show that the interaction of these anions with [emim]+ cation is electrostatic in the nature and the side chain length in the anions has an important effect on the contribution of ΔEelect term. The... 

    Meta hybrid density functional theory study of adsorption of imidazolium and ammonium based ionic liquids on graphene sheet

    , Article Journal of Physical Chemistry C ; Volume 119, Issue 13 , March , 2015 , Pages 7095-7108 ; 19327447 (ISSN) Shakourian Fard, M ; Jamshidi, Z ; Bayat, A ; Kamath, G ; Sharif University of Technology
    American Chemical Society  2015
    Abstract
    In this study, two types of ionic liquids (ILs) based on 1 butyl 3 methylimidazolium [Bmim]+ and butyltrimethylammonium [Btma]+ cations, paired to tetrafluoroborate [BF4], hexafluorophosphate [PF6], dicyanamide [DCA], and bis(trifluoromethylsilfonyl)imide [Tf2N] anions, were chosen as adsorbates to investigate the influence of cation and anion type on the adsorption of ILs on the graphene surface. The adsorption process on the graphene surface (circumcoronene) was studied using M06 2X/cc pVDZ level of theory. Empirical dispersion correction (D3) was also added to the M06 2X functional to investigate the effects of dispersion on the binding energy values. The graphene···IL configurations,... 

    Influence of scalar-relativistic and spin-orbit terms on the plasmonic properties of pure and silver-doped gold chains

    , Article Journal of Physical Chemistry C ; Volume 123, Issue 14 , 2019 , Pages 9331-9342 ; 19327447 (ISSN) Khodabandeh, M. H ; Asadi Aghbolaghi, N ; Jamshidi, Z ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    The unique plasmonic character of silver and gold nanoparticles has a wide range of applications, and tailoring this property by changing electronic and geometric structures has received a great deal of attention. Herein, we study the role of the quantum properties in controlling the plasmonic excitations of gold and silver atomic chains and rods. The influence of relativistic effects, scalar as well as spin-orbit, on the intensity and energy of plasmonic excitations is investigated. The intensity quenching and the red shift of energy in the presence of relativistic effects are introduced via the appearance of d orbitals directly in optical excitations in addition to the screening of... 

    Theoretical simulation of surface-enhanced resonance Raman spectroscopy of cytosine and its tautomers

    , Article Journal of Raman Spectroscopy ; Volume 51, Issue 1 , 2020 , Pages 55-65 Sharafdini, R ; Mohammadpour, M ; Ramazani, S ; Jamshidi, Z ; Sharif University of Technology
    John Wiley and Sons Ltd  2020
    Abstract
    The primary challenge of spectroscopic techniques in selective detection and characterization of tautomeric structures of DNA and RNA bases, and moreover, the accurate interpretation and explanation of the experimental results are the main motives of theoretical studies. Surface-enhanced Raman spectroscopy (SERS) can be a powerful approach to distinguish cytosine in the presence of its tautomers. For this respect, herein, the theoretical simulation of the SERS spectra of cytosine and its three most stable tautomers adsorbed on silver clusters is carried out. The calculations of SERS spectra is based on the excited-state energy gradient approximation as a well-established approach that gives... 

    Effects of ligands on (de-)enhancement of plasmonic excitations of silver, gold and bimetallic nanoclusters: TD-DFT+TB calculations

    , Article Physical Chemistry Chemical Physics ; Volume 23, Issue 33 , 2021 , Pages 17929-17938 ; 14639076 (ISSN) Asadi Aghbolaghi, N ; Pototschnig, J ; Jamshidi, Z ; Visscher, L ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    Metal nanoclusters can be synthesized in various sizes and shapes and are typically protected with ligands to stabilize them. These ligands can also be used to tune the plasmonic properties of the clusters as the absorption spectrum of a protected cluster can be significantly altered compared to the bare cluster. In this paper, we computationally investigate the influence of thiolate ligands on the plasmonic intensity for silver, gold and alloy clusters. Using time-dependent density functional theory with tight-binding approximations, TD-DFT+TB, we show that this level of theory can reproduce the broad experimental spectra of Au144(SR)60 and Ag53Au91(SR)60 (R = CH3) compounds with... 

    Interactions of coinage metal clusters with histidine and their effects on histidine acidity; Theoretical investigation

    , Article Organic and Biomolecular Chemistry ; Volume 10, Issue 47 , Oct , 2012 , Pages 9373-9382 ; 14770520 (ISSN) Javan, M. J ; Jamshidi, Z ; Tehrani, Z. A ; Fattahi, A ; Sharif University of Technology
    2012
    Abstract
    Understanding the nature of interaction between metal nanoparticles and biomolecules such as amino acids is important in the development and design of biosensors. In this paper, binding of M3 clusters (M = Au, Ag and Cu) with neutral and anionic forms of histidine amino acid was studied using density functional theory (DFT-B3LYP). It was found that the interaction of histidine with M3 clusters is governed by two major bonding factors: (a) the anchoring N-M and O-M bonds and (b) the nonconventional N-H⋯M and O-H⋯M hydrogen bonds. The nature of these chemical bonds has been investigated based on quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analyses. In the next... 

    Can anion interaction accelerate transformation of cytosine tautomers? Detailed view form QTAIM analysis

    , Article Structural Chemistry ; Volume 23, Issue 6 , 2012 , Pages 1843-1855 ; 10400400 (ISSN) Jebeli Javan, M ; Tehrani, Z. A ; Fattahi, A ; Jamshidi, Z ; Sharif University of Technology
    Abstract
    The relative stabilities and noncovalent interactions of the six low-lying energy tautomers of cytosine nucleobase with some biological anions (such as F-, Cl-, and CN-) have been investigated in gas phase by density functional theory (DFT) method in conjunction with 6-311++G (d,p) atomic basis set. Furthermore, to systematically investigate all possible tautomerisms from cytosine induced by proton transfer, we describe a study of structural tautomer interconversion in the gas phase and in a continuum solvent using DFT calculation. We carried out geometrical optimizations with the integral equation formalism of polarizable continuum (IEF-PCM) model to account for the solvent effect, and the... 

    Interactions of glutathione tripeptide with gold cluster: Influence of intramolecular hydrogen bond on complexation behavior

    , Article Journal of Physical Chemistry A ; Volume 116, Issue 17 , 2012 , Pages 4338-4347 ; 10895639 (ISSN) Tehrani, Z. A ; Jamshidi, Z ; Javan, M. J ; Fattahi, A ; Sharif University of Technology
    2012
    Abstract
    Understanding the nature of the interaction between metal nanoparticles and biomolecules has been important in the development and design of sensors. In this paper, structural, electronic, and bonding properties of the neutral and anionic forms of glutathione tripeptide (GSH) complexes with a Au 3 cluster were studied using the DFT-B3LYP with 6-31+G**-LANL2DZ mixed basis set. Binding of glutathione with the gold cluster is governed by two different kinds of interactions: Auâ€"X (X = N, O, and S) anchoring bond and Au··•·•H-X nonconventional hydrogen bonding. The influence of the intramolecular hydrogen bonding of glutathione on the interaction of this peptide with the gold cluster has been... 

    Synthesis, structure and photophysical properties of binuclear methylplatinum complexes containing cyclometalating 2-phenylpyridine or benzo{h}quinoline ligands: A comparison of intramolecular Pt-Pt and π-π Interactions

    , Article Dalton Transactions ; Volume 40, Issue 36 , 2011 , Pages 9123-9130 ; 14779226 (ISSN) Jamali, S ; Czerwieniec, R ; Kia, R ; Jamshidi, Z ; Zabel, M ; Sharif University of Technology
    2011
    Abstract
    The binuclear cyclometalated complexes [Pt2Me 2(ppy)2(μ-dppm)], 1a, and [Pt2Me 2(bhq)2(μ-dppm)], 1b, in which ppy = 2-phenylpyridyl, bhq = benzo{h}quinoline and dppm = bis(diphenylphosphino)methane, were synthesized by the reaction of [PtMe(SMe2)(ppy)] or [PtMe(SMe 2)(bhq)] with 1/2 equiv of dppm at room temperature, respectively. Complexes 1a and 1b were fully characterized by multinuclear (1H, 31P, 13C, and 195Pt) NMR spectroscopy and were further identified by single crystal X-ray structure determination. A comparison of the intramolecular Pt-Pt and π-π interactions in complexes 1a and 1b has been made on the basis of data on crystal structures and wave functions analysis. The binuclear... 

    TD-DFT+TB: an efficient and fast approach for quantum plasmonic excitations

    , Article Journal of Physical Chemistry C ; Volume 124, Issue 14 , 2020 , Pages 7946-7955 Asadi Aghbolaghi, N ; Rüger, R ; Jamshidi, Z ; Visscher, L ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    We study the quantum plasmonic features of gold and silver nanoparticles using TD-DFT+TB, a new density functional theory approach to the calculation of excited states, which combines a full DFT ground state with tight-binding approximations in the linear response calculation. In this framework, the optical properties of closed-shell Ag, Au and bimetallic Ag-Au nanoparticles with tetrahedral symmetry (with 20, 56, 120, and 165 atoms) and icosahedral structure (with 13, 55, and 147 atoms) were obtained and compared to full linear response time-dependent density functional theory (TD-DFT) as a reference and also to time-dependent density functional based tight binding (TD-DFTB) as a low-cost... 

    First principle simulation of coated hydroxychloroquine on Ag, Au and Pt nanoparticles

    , Article Scientific Reports ; Volume 11, Issue 1 , 2021 ; 20452322 (ISSN) Morad, R ; Akbari, M ; Rezaee, P ; Koochaki, A ; Maaza, M ; Jamshidi, Z ; Sharif University of Technology
    Nature Research  2021
    Abstract
    From the first month of the COVID-19 pandemic, the potential antiviral properties of hydroxychloroquine (HCQ) and chloroquine (CQ) against SARS-CoV-2 suggested that these drugs could be the appropriate therapeutic candidates. However, their side effects directed clinical tests towards optimizing safe utilization strategies. The noble metal nanoparticles (NP) are promising materials with antiviral and antibacterial properties that can deliver the drug to the target agent, thereby reducing the side effects. In this work, we applied both the quantum mechanical and classical atomistic molecular dynamics approaches to demonstrate the adsorption properties of HCQ/CQ on Ag, Au, AgAu, and Pt... 

    Structures of Cu n + (n = 3-10) Clusters Obtained by Infrared Action Spectroscopy

    , Article Journal of Physical Chemistry Letters ; Volume 10, Issue 9 , 2019 , Pages 2151-2155 ; 19487185 (ISSN) Lushchikova, O. V ; Huitema, D. M. M ; López Tarifa, P ; Visscher, L ; Jamshidi, Z ; Bakker, J. M ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    Coinage metal clusters are of great importance for a wide range of scientific fields, ranging from microscopy to catalysis. Despite their clear fundamental and technological importance, the experimental structural determination of copper clusters has attracted little attention. We fill this gap by elucidating the structure of cationic copper clusters through infrared (IR) photodissociation spectroscopy of Cu n + -Ar m complexes. Structures of Cu n + (n = 3-10) are unambiguously assigned based on the comparison of experimental IR spectra in the 70-280 cm -1 spectral range with spectra calculated using density functional theory. Whereas Cu 3 + and Cu 4 + are planar, starting from n = 5, Cu n +... 

    Introducing bluish-green light-emitting diodes (OLEDs) and tuning their color intensity by uranium complexes: Synthesis, characterization, and photoluminescence studies of 8‑hydroxyquinoline complexes of uranium

    , Article Inorganic Chemistry ; 2020 Darzinezhad, K ; Amini, M. M ; Janghouri, M ; Mohajerani, E ; Fathollahi, M. R ; Jamshidi, Z ; Janiak, C ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    To improve our understanding of the chemistry of actinide complexes and to spur their development in the field of actinide markers, two new uranium complexes were synthesized using 8-hydroxyquinoline and 5,7-dichloro-8-hydroxyquinoline. The prepared complexes were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, ultraviolet− visible spectroscopy, elemental analysis, and single-crystal X-ray diffraction. The impact of the electron-withdrawing group of the ligand on the photoluminescence spectra of the complexes in solution and in the solid state was scrutinized. The bandgap of the complexes was calculated using the density functional theory (DFT) method to... 

    Bis-N-Heterocyclic carbene complexes of coinage metals containing four naphthalimide units: a structure-emission properties relationship study

    , Article Inorganic Chemistry ; Volume 60, Issue 17 , 2021 , Pages 12924-12933 ; 00201669 (ISSN) Hendi, Z ; Jamali, S ; Chabok, S. M. J ; Jamjah, A ; Samouei, H ; Jamshidi, Z ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Naphthalimide derivatives provide highly versatile self-assembled systems and aggregated forms with fascinating emission properties that make them potential candidates for many applications such as bioimaging and sensing. Although various aggregated species of naphthalimide derivatives have been well documented, little is known about the correlation between their structure and photophysical properties. Here the preparation of a series of tetrameric naphthalimide molecules in which naphthalimide units are linked by bis-N-heterocyclic carbene complexes of coinage metals is described. An in-depth structural investigation into these tetramers has been carried out in solution and the solid state... 

    Metal-Organic cubane cage with trimethylplatinum(Iv) vertices

    , Article Inorganic Chemistry ; 2021 ; 00201669 (ISSN) Hendi, Z ; Jamali, S ; Mahmoudi, S ; Samouei, H ; Nayeri, S ; Chabok, S. M. J ; Jamshidi, Z ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Herein we describe the synthesis and characterization of the first platinum(IV) metal-organic cage [(Me3PtIV)8(byp)12](OTf)8 (2), in which the organometallic moieties trimethylplatinum(IV) (PtMe3) occupied the corners of a cubane structure and 4,4′-bipyridine ligands used as linkers. The first-principles density functional theory calculations showed that the highest occupied molecular orbitals were localized on the PtMe3 moieties, while the lowest unoccupied molecular orbitals were distributed on the organic linkers. © 2021 American Chemical Society  

    Toward visual chiral recognition of amino acids using a wide-range color tonality ratiometric nanoprobe

    , Article Analytica Chimica Acta ; Volume 1231 , 2022 ; 00032670 (ISSN) Jafar Nezhad Ivrigh, Z ; Fahimi Kashani, N ; Morad, R ; Jamshidi, Z ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Chiral recognition has long been a challenging issue to deal with in biological systems, drug design and food authentication. Implementing nanoparticle-based probes with intrinsic or induced chirality in this field has addressed several issues concerning sensitivity, reliability, rapidness and the cost of chiral sensing platforms. Yet, research into chiral nanoprobes that can be used for visual monitoring of chiral substances is still in its infancy. As part of this study, a visual chiral recognition platform has been developed in which a combination of blue-emitting carbon dots (BCDs) and mercaptopropionic acid-capped CdTe quantum dots (MPA-QDs) with inherent chiroptical activity were...