Loading...
Search for: karimi-sabet--j
0.009 seconds

    Thermodynamic modeling of PVTx properties for several water/hydrocarbon systems in near-critical and supercritical conditions

    , Article Korean Journal of Chemical Engineering ; Volume 30, Issue 1 , January , 2013 , Pages 201-212 ; 02561115 (ISSN) Masoodiyeh, F ; Mozdianfard, M. R ; Karimi Sabet, J ; Sharif University of Technology
    2013
    Abstract
    Both the equation of state-excess Gibbs energy (EoS/GE) model and the cubic plus association (CPA) equation of state (EoS) are compared in this study with respect to their accuracy in the correlation of PVTx for systems such as water/methanol, water/ethanol, water/benzene, water/toluene, water/methane, water/n-butane, water/n-pentane, water/n-hexane, water/heptane, and water/octane, in supercritical conditions within temperature and pressure ranges of (573-698 K) and (7. 0-276. 0 MPa), respectively. In the proposed EoS/GE model, Peng-Robinson (PR) equation of state, linear combination Vidal-Michelsen (LCVM) and Wong-Sandler (WS) mixing rules in conjunction with UNIQUAC activity coefficient... 

    Experimental investigation of effects of the feed flow rate and “tail scoop-wall” clearance on the performance of a gas centrifuge by feeding a Freon mixture

    , Article Separation Science and Technology (Philadelphia) ; Volume 51, Issue 7 , 2016 , Pages 1259-1267 ; 01496395 (ISSN) Sadeghi, M. H ; Outokesh, M ; Karimi Sabet, J ; Sharif University of Technology
    Taylor and Francis Inc  2016
    Abstract
    ABSTRACT: Experimental study of the performance of a gas centrifuge can be appreciably simplified if instead of isotopic mixtures, a binary mixture of gases with large molecular weight difference is used. The current study undertook this approach by injecting a 53%–47% (w/w) mixture of “Freon12-Freon22” into a gas centrifuge. The two parameters, whose investigation was the objective of the current study were: the feed flow rate (F), and the clearance between tail scoop and the rotor wall (d). The results demonstrated that changing the scoop-wall clearance has the most significant effect on the cut (θ), so that by fixing “d”, “θ” becomes nearly invariant. The head separation factor (α)... 

    Biodiesel production from Spirulina microalgae feedstock using direct transesterification near supercritical methanol condition

    , Article Bioresource Technology ; Volume 239 , 2017 , Pages 378-386 ; 09608524 (ISSN) Mohamadzadeh Shirazi, H ; Karimi Sabet, J ; Ghotbi, C ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Microalgae as a candidate for production of biodiesel, possesses a hard cell wall that prevents intracellular lipids leaving out from the cells. Direct or in situ supercritical transesterification has the potential for destruction of microalgae hard cell wall and conversion of extracted lipids to biodiesel that consequently reduces the total energy consumption. Response surface methodology combined with central composite design was applied to investigate process parameters including: Temperature, Time, Methanol-to-dry algae, Hexane-to-dry algae, and Moisture content. Thirty-two experiments were designed and performed in a batch reactor, and biodiesel efficiency between 0.44% and 99.32% was... 

    Ion-pair extraction-reaction of calcium using Y-shaped microfluidic junctions: An optimized separation approach

    , Article Chemical Engineering Journal ; Volume 334 , 2018 , Pages 2603-2615 ; 13858947 (ISSN) Foroozan Jahromi, P ; Karimi Sabet, J ; Amini, Y ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    In this research, a continuous microsolvent extraction-reaction was developed for the efficient separation of calcium ion. This study gives a preliminary possible practical application of microfluidic devices in chemical exchange reaction for enrichment of 48Ca stable isotope. For this purpose, in the first stage, the hydrodynamic behavior of two immiscible liquids in a simple Y-shaped microfluidic junction is experimentally investigated, and then ion-pair extraction-reaction of Ca2+ using picric acid as a counter-ion and dicyclohexano-18-crown-6 (DC18C6) as a lipophilic ionophore is studied in this microfluidic and conventional batch method. The impact of main process parameters, including... 

    Efficient CO oxidation over palladium supported on various MOFs: Synthesis, amorphization, and space velocity of hydrogen stream

    , Article International Journal of Hydrogen Energy ; Volume 45, Issue 41 , 2020 , Pages 21450-21463 Abbasi, F ; Karimi Sabet, J ; Ghotbi, C ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Amine-functionalized MIL-101(Cr) has been synthesized by hydrothermal (MNH2) and post-synthetic modification (MNH2-p) approaches. Pd/MNH2 and Pd/MNH2-p have been tested in CO oxidation reaction as a gas phase reaction to clarify the difference between two synthesis approaches. Their performance has also been compared with that of Pd supported on MIL as a common MOF and CuBTC as a commercial one. The results show the significant difference between Pd/MNH2-p and Pd/MNH2, where CO conversion of 100% was not observed for Pd/MNH2-p, whereas Pd/MNH2 outperformed the others and exhibited the high reaction rate thanks to the active sites created by amorphization during the reduction process because... 

    Reactivity and characteristics of Pd/MOF and Pd/calcinated-MOF catalysts for CO oxidation reaction: Effect of oxygen and hydrogen

    , Article International Journal of Hydrogen Energy ; Volume 46, Issue 24 , 2021 , Pages 12822-12834 ; 03603199 (ISSN) Abbasi, F ; Karimi Sabet, J ; Ghotbi, C ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    For the first time, the effect of calcination process on characteristics and catalytic performances of Pd supported on different MOFs (MIL-101(Cr), NH2-MIL-101(Cr), and HKUST-1) was evaluated. Besides, the various orders of calcination process and reduction one on Pd/MOF and Pd/calcinated-MOF were studied, and their performances in CO oxidation reaction were presented to find the effect of H2 and O2. Results showed that the effect of calcination and reduction processes on the catalytic activities and characteristics strongly depends on the nature of MOF. Among MIL-based catalysts, the catalyst with no calcination treatment showed the best activity. Among MNH2-based catalysts, high activity... 

    Reactivity and characteristics of Pd/MOF and Pd/calcinated-MOF catalysts for CO oxidation reaction: Effect of oxygen and hydrogen

    , Article International Journal of Hydrogen Energy ; Volume 46, Issue 24 , 2021 , Pages 12822-12834 ; 03603199 (ISSN) Abbasi, F ; Karimi Sabet, J ; Ghotbi, C ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    For the first time, the effect of calcination process on characteristics and catalytic performances of Pd supported on different MOFs (MIL-101(Cr), NH2-MIL-101(Cr), and HKUST-1) was evaluated. Besides, the various orders of calcination process and reduction one on Pd/MOF and Pd/calcinated-MOF were studied, and their performances in CO oxidation reaction were presented to find the effect of H2 and O2. Results showed that the effect of calcination and reduction processes on the catalytic activities and characteristics strongly depends on the nature of MOF. Among MIL-based catalysts, the catalyst with no calcination treatment showed the best activity. Among MNH2-based catalysts, high activity... 

    Modeling and process design of intraparticle adsorption in single-stage and multistage continuous stirred reactors: An analytical kinetics approach

    , Article Industrial and Engineering Chemistry Research ; Vol. 53, issue. 1 , 2014 , pp. 305-315 ; ISSN: 08885885 Outokesh, M ; Naderi, A ; Khanchi, A. R ; Karimi Sabet, J ; Sharif University of Technology
    Abstract
    Continuous adsorption in stirred reactors in the form of carbon in pulp (CIP) and resin in pulp (RIP) is an established process for the extraction of gold and uranium. Under the circumstance of intraparticle diffusion resistance, CIP and RIP have been accurately modeled by the Boyd's series (reversible adsorption) and shrinking core model (irreversible adsorption). The present study, in its first part, introduces an analytical formula that most closely approximates both models. Using such formula, the study addresses a basic algorithm for optimization of single-stage continuous adsorption systems through linking of the major process variables. Furthermore, this study is devoted to developing... 

    Pressure-driven liquid-liquid separation in Y-shaped microfluidic junctions

    , Article Chemical Engineering Journal ; Volume 328 , 2017 , Pages 1075-1086 ; 13858947 (ISSN) Foroozan Jahromi, P ; Karimi Sabet, J ; Amini, Y ; Fadaei, H ; Sharif University of Technology
    Abstract
    On-chip phase separation of multiphase microflows at the divergence point of Y-shaped microfluidic junctions is an effective way for integrating continuous microstructured devices. In this study, flow pattern maps of various solvent pairs based on the volumetric flow rates of both phases have been drawn experimentally and compared with numerical prediction to investigate the effective domain for which complete phase separation occurred. Furthermore, sufficient separation of aqueous and organic phases at the end of the microchannel was achieved by controlling the pressure difference at the liquid-liquid interface via loading back-pressure on the organic phase. A mathematical model based on... 

    Thin film graphene oxide membrane: challenges and gas separation potential

    , Article Korean Journal of Chemical Engineering ; Volume 35, Issue 5 , May , 2018 , Pages 1174-1184 ; 02561115 (ISSN) Abbasi, F ; Karimi Sabet, J ; Ghotbi, C ; Abbasi, Z ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    Graphene oxide membranes were prepared by vacuum and pressurized ultrafiltration methods on the 12% modified Polyacrylonitrile (12mPAN) substrate to specify challenges, salient features, future directions, and potential of GO membrane for separation fields using characterization techniques and gas separation test (studied gases are CO2, He and N2), which is an efficient tool for better understanding of GO membrane behavior. GO membrane structure was examined over a wide range of parameters, such as pore size range of substrate and its surface properties, pH of GO dispersion, GO content, synthesis pressure, operating pressure and temperature. The results show that the GO content does not hold... 

    Step-by-step improvement of mixed-matrix nanofiber membrane with functionalized graphene oxide for desalination via air-gap membrane distillation

    , Article Separation and Purification Technology ; Volume 256 , 2021 ; 13835866 (ISSN) Fouladivanda, M ; Karimi Sabet, J ; Abbasi, F ; Moosavian, M. A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    A straightforward three-stage method was applied to fabricate a super-hydrophobic mixed-matrix nanofiber membrane using the electrospinning method for desalination purpose. First, a hydrothermal technique was applied to synthesize a super-hydrophobic nano-sheet, called octadecylamine-reduced graphene oxide (ODA-rGO) with a water contact angle of 162°, which was then added to PVDF-HFP dope solution. After, 0.005 wt% LiCl was added to the dope solution to decrease the mean pore size by increasing solution conductivity. Moreover, some membranes were hot-pressed to improve liquid entry pressure (LEP). Eventually, a top-quality nanofiber membrane was synthesized using 0.1 wt% ODA-rGO and 0.005... 

    Conversion of CO into CO2 by high active and stable PdNi nanoparticles supported on a metal-organic framework

    , Article Frontiers of Chemical Science and Engineering ; 2021 ; 20950179 (ISSN) Abbasi, F ; Karimi Sabet, J ; Abbasi, Z ; Ghotbi, C ; Sharif University of Technology
    Higher Education Press Limited Company  2021
    Abstract
    The solubility of Pd(NO3)2 in water is moderate whereas it is completely soluble in diluted HNO3 solution. Pd/MIL-101(Cr) and Pd/MIL-101-NH2(Cr) were synthesized by aqueous solution of Pd(NO3)2 and Pd(NO3)2 solution in dilute HNO3 and used for CO oxidation reaction. The catalysts synthesized with Pd(NO3)2 solution in dilute HNO3 showed lower activity. The aqueous solution of Pd(NO3)2 was used for synthesis of mono-metal Ni, Pd and bimetallic PdNi nanoparticles with various molar ratios supported on MOF. Pd70Ni30/MIL-101(Cr) catalyst showed higher activity than monometallic counterparts and Pd + Ni physical mixture due to the strong synergistic effect of PdNi nanoparticles, high distribution... 

    Conversion of CO into CO2 by high active and stable PdNi nanoparticles supported on a metal-organic framework

    , Article Frontiers of Chemical Science and Engineering ; 2021 ; 20950179 (ISSN) Abbasi, F ; Karimi Sabet, J ; Abbasi, Z ; Ghotbi, C ; Sharif University of Technology
    Higher Education Press Limited Company  2021
    Abstract
    The solubility of Pd(NO3)2 in water is moderate whereas it is completely soluble in diluted HNO3 solution. Pd/MIL-101(Cr) and Pd/MIL-101-NH2(Cr) were synthesized by aqueous solution of Pd(NO3)2 and Pd(NO3)2 solution in dilute HNO3 and used for CO oxidation reaction. The catalysts synthesized with Pd(NO3)2 solution in dilute HNO3 showed lower activity. The aqueous solution of Pd(NO3)2 was used for synthesis of mono-metal Ni, Pd and bimetallic PdNi nanoparticles with various molar ratios supported on MOF. Pd70Ni30/MIL-101(Cr) catalyst showed higher activity than monometallic counterparts and Pd + Ni physical mixture due to the strong synergistic effect of PdNi nanoparticles, high distribution... 

    Conversion of CO into CO2 by high active and stable PdNi nanoparticles supported on a metal-organic framework

    , Article Frontiers of Chemical Science and Engineering ; Volume 16, Issue 7 , 2022 , Pages 1139-1148 ; 20950179 (ISSN) Abbasi, F ; Karimi Sabet, J ; Abbasi, Z ; Ghotbi, C ; Sharif University of Technology
    Higher Education Press Limited Company  2022
    Abstract
    The solubility of Pd(NO3)2 in water is moderate whereas it is completely soluble in diluted HNO3 solution. Pd/MIL-101(Cr) and Pd/MIL-101-NH2(Cr) were synthesized by aqueous solution of Pd(NO3)2 and Pd(NO3)2 solution in dilute HNO3 and used for CO oxidation reaction. The catalysts synthesized with Pd(NO3)2 solution in dilute HNO3 showed lower activity. The aqueous solution of Pd(NO3)2 was used for synthesis of mono-metal Ni, Pd and bimetallic PdNi nanoparticles with various molar ratios supported on MOF. Pd70Ni30/MIL-101(Cr) catalyst showed higher activity than monometallic counterparts and Pd + Ni physical mixture due to the strong synergistic effect of PdNi nanoparticles, high distribution... 

    Improved method for increasing accessible pores of MIL-101(Cr) by encapsulation and removal of Phosphotungstic acid (PTA): Pd/PTA-MIL-101(Cr) as an effective catalyst for CO oxidation

    , Article Journal of Cleaner Production ; Volume 347 , 2022 ; 09596526 (ISSN) Abbasi, F ; Karimi Sabet, J ; Abbasi, Z ; Ghotbi, C ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This study forwards a novel and simple approach for encapsulation of Phosphotungstic acid (PTA) into MIL-101(Cr) cavities to develop PTA-MIL-101(Cr) with a high surface area. In this method, the resulting surface area of PTA-MIL-101(Cr) (3563 m2/g) is 1.72 times that of MIL-101(Cr) due to the existence of more accessible pores which are formed by leaching of PTAs incorporated inside MIL-101(Cr) pores during the intense washing. Catalysts are investigated in CO oxidation under atmospheric pressure and feed composition of 1%CO, 20%O2, and 79%He. 3%Pd/PTA-MIL-101(Cr) shows 100%CO conversion at T = 145 °C and outperforms PTA, PTA-MIL-101(Cr), Pd/PTA, 1–3%Pd/MIL-101(Cr), Pd-PTA/MIL-101(Cr), and... 

    Preparation and characterization of raloxifene nanoparticles using Rapid Expansion of Supercritical Solution (RESS)

    , Article Journal of Supercritical Fluids ; Volume 63 , 2012 , Pages 169-179 ; 08968446 (ISSN) Keshavarz, A ; Karimi Sabet, J ; Fattahi, A ; Golzary, A ; Rafiee Tehrani, M ; Dorkoosh, F. A ; Sharif University of Technology
    2012
    Abstract
    One of the key factors in drug's efficacy is the value of their bioavailability that increases by the reduction of particle size through improvement of dissolution rate. In this study, raloxifene particle size was reduced by Rapid Expansion of Supercritical Solution (RESS). The effect of extraction temperature (40-80 °C), extraction pressure (10-18 MPa) and spray distance (5-10 cm) were investigated on size and particle size distribution of the nanoparticles. Particles were characterized using X-ray diffraction (XRD), Fourier Transform Infrared Analysis (FTIR), Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM) and Dynamic Light Scattering (DLS). The average size of... 

    Solvation free energy and solubility of acetaminophen and ibuprofen in supercritical carbon dioxide: Impact of the solvent model

    , Article Journal of Supercritical Fluids ; Volume 109 , 2016 , Pages 166-176 ; 08968446 (ISSN) Noroozi, J ; Ghotbi, C ; Jahanbin Sardroodi, J ; Karimi Sabet, J ; Robert, M. A ; Sharif University of Technology
    Elsevier  2016
    Abstract
    Classical molecular dynamics simulations are used to compute the solvation free energy of two pharmaceutical solids, namely ibuprofen and acetaminophen in carbon dioxide (CO2), over the density range of interest in supercritical processes. In order to examine the influence of the solvent model on the resulting free energies, three popular CO2 models (Zhang, EPM2, and TraPPE) are studied. Relatively large discrepancies for the solvation free energy exist between these CO2 models, suggesting that the former is sensitive to the different balances between dispersive and electrostatic forces used in these models. In particular, for the solvation of the highly polar (dipole moment of ∼5.2 Debye)... 

    Experimental and simulation investigation on separation of binary hydrocarbon mixture by thermogravitational column

    , Article Journal of Molecular Liquids ; Volume 268 , 2018 , Pages 791-806 ; 01677322 (ISSN) Hashemipour, N ; Karimi Sabet, J ; Motahari, K ; Mahruz Monfared, S ; Amini, Y ; Moosavian, M. A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    In this article, experimental and numerical investigations are performed to study a thermogravitational column (TGC) for the separation of toluene/n-heptane mixture. This research has tried to determine the main significant parameters and their effects on the performance of the process. In experimental examinations, the influence of the main parameters such as feed flow rate, cut and temperature gradient on the performance of the TGC efficiency is studied. In addition, computational fluid dynamics is used to simulate the separation process in this review. The response surface methodology (RSM) was also applied to minimize the number of runs and investigate the optimum operating conditions.... 

    Numerical study of n-heptane/benzene separation by thermal diffusion column

    , Article Chinese Journal of Chemical Engineering ; Volume 27, Issue 8 , 2019 , Pages 1745-1755 ; 10049541 (ISSN) Hashemipour, N ; Karimi Sabet, J ; Motahari, K ; Mahruz Monfared, S ; Amini, Y ; Moosavian, M. A ; Sharif University of Technology
    Chemical Industry Press  2019
    Abstract
    In this article, numerical simulations are performed to investigate the performance of the thermal diffusion column for the separation of n-heptane/benzene mixture. The present work tried to optimize column by analyzing significant parameters such as feed flow rate, temperature and cut. In order to obtain the hydrodynamic and temperature and mass distribution inside thermal diffusion column, computational fluid dynamic (CFD) method is applied to solve the Navier–Stocks equations. Numerical simulations are conducted to study the main parameters in both stationary and time-dependent conditions. By using the separation work unit as a function of cut, the optimal cut for maximum SWU occurs...