Loading...
Search for: kashaninejad--n
0.012 seconds

    A new non-dimensional parameter to obtain the minimum mixing length in tree-like concentration gradient generators

    , Article Chemical Engineering Science ; Volume 195 , 2019 , Pages 120-126 ; 00092509 (ISSN) Rismanian, M ; Saidi, M. S ; Kashaninejad, N ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Microfluidic-based concentration gradient generators (CGGs) have a number of applications in chemical, biological and pharmaceutical studies. Thus, precise design of the microfluidic system is crucial to maintaining the desired concentration gradient in microchannels. One of the design considerations is the length of microchannels in the structure of a CGG. A CGG with a short length fails to provide the complete diffusive mixing, while the size of the microchip would unfavorably increase by incorporating a long CGG. Considering a CGG as a tree-like structure consisting of T-shaped micromixers, the mixing process of the species at a straight microchannel has been solved analytically. Herein,... 

    A microfluidic concentration gradient generator for simultaneous delivery of two reagents on a millimeter-sized sample

    , Article Journal of Flow Chemistry ; Volume 10, Issue 4 , 2020 , Pages 615-625 Rismanian, M ; Saidi, M. S ; Kashaninejad, N ; Sharif University of Technology
    Springer International Publishing  2020
    Abstract
    Microfluidic concentration gradient generators (μCGGs) are indispensable parts of many emerging lab-on-a-chip platforms for biological studies and drug delivery applications. Most of the μCGGs reported in the literature can only generate the desired concentration gradients in a micron-sized sample (e.g., cells). As such, there is an unmet need to design a μCGG that can generate continuous concentration gradients of multi reagents (e.g., drugs) in a millimeter-sized sample (e.g., tissue). Herein, we report the proof-of-concept of this class of μCGG by combining a modified tree-like CGG with a micromixer. By conducting both experimental investigation and numerical analysis, we show that the... 

    Numerical simulation of the behavior of toroidal and spheroidal multicellular aggregates in microfluidic devices with microwell and U-shaped barrier

    , Article Micromachines ; Volume 8, Issue 12 , 2017 ; 2072666X (ISSN) Barisam, M ; Saidi, M. S ; Kashaninejad, N ; Vadivelu, R ; Nguyen, N. T ; Sharif University of Technology
    Abstract
    A microfluidic system provides an excellent platform for cellular studies. Most importantly, a three-dimensional (3D) cell culture model reconstructs more accurately the in vivo microenvironment of tissue. Accordingly, microfluidic 3D cell culture devices could be ideal candidates for in vitro cell culture platforms. In this paper, two types of 3D cellular aggregates, i.e., toroid and spheroid, are numerically studied. The studies are carried out for microfluidic systems containing U-shaped barrier as well as microwell structure. For the first time, we obtain oxygen and glucose concentration distributions inside a toroid aggregate as well as the shear stress on its surface and compare its... 

    Fabrication and characterization of low-cost, bead-free, durable and hydrophobic electrospun membrane for 3D cell culture

    , Article Biomedical Microdevices ; Volume 19, Issue 4 , 2017 ; 13872176 (ISSN) Moghadas, H ; Saidi, M. S ; Kashaninejad, N ; Kiyoumarsioskouei, A ; Trung Nguyen, N ; Sharif University of Technology
    Abstract
    This paper reports the fabrication of electrospun polydimethylsiloxane (PDMS) membranes/scaffolds that are suitable for three-dimensional (3D) cell culture. Through modification the ratio between PDMS and polymethylmethacrylate (PMMA) as carrier polymer, we report the possibility of increasing PDMS weight ratio of up to 6 for electrospinning. Increasing the PDMS content increases the fiber diameter, the pore size, and the hydrophobicity. To our best knowledge, this is the first report describing beads-free, durable and portable electrospun membrane with maximum content of PDMS suitable for cell culture applications. To show the proof-of-concept, we successfully cultured epithelial lung... 

    Challenge in particle delivery to cells in a microfluidic device

    , Article Drug Delivery and Translational Research ; Volume 8, Issue 3 , 2018 , Pages 830-842 ; 2190393X (ISSN) Moghadas, H ; Saidi, M. S ; Kashaninejad, N ; Nguyen, N. T ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    Micro and nanotechnology can potentially revolutionize drug delivery systems. Novel microfluidic systems have been employed for the cell culture applications and drug delivery by micro and nanocarriers. Cells in the microchannels are under static and dynamic flow perfusion of culture media that provides nutrition and removes waste from the cells. This exerts hydrostatic and hydrodynamic forces on the cells. These forces can considerably affect the functions of the living cells. In this paper, we simulated the flow of air, culture medium, and the particle transport and deposition in the microchannels under different angles of connection inlet. It was found that the shear stress induced by the... 

    A high-performance polydimethylsiloxane electrospun membrane for cell culture in lab-on-a-chip

    , Article Biomicrofluidics ; Volume 12, Issue 2 , April , 2018 ; 19321058 (ISSN) Moghadas, H ; Saidi, M. S ; Kashaninejad, N ; Nguyen, N. T ; Sharif University of Technology
    American Institute of Physics Inc  2018
    Abstract
    Thin porous membranes are important components in a microfluidic device, serving as separators, filters, and scaffolds for cell culture. However, the fabrication and the integration of these membranes possess many challenges, which restrict their widespread applications. This paper reports a facile technique to fabricate robust membrane-embedded microfluidic devices. We integrated an electrospun membrane into a polydimethylsiloxane (PDMS) device using the simple plasma-activated bonding technique. To increase the flexibility of the membrane and to address the leakage problem, the electrospun membrane was fabricated with the highest weight ratio of PDMS to polymethylmethacrylate (i.e., 6:1... 

    Prediction of necrotic core and hypoxic zone of multicellular spheroids in a microbioreactor with a U-shaped barrier

    , Article Micromachines ; Volume 9, Issue 3 , 2018 ; 2072666X (ISSN) Barisam, M ; Saidi, M. S ; Kashaninejad, N ; Nguyen, N. T ; Sharif University of Technology
    MDPI AG  2018
    Abstract
    Microfluidic devices have been widely used for biological and cellular studies. Microbioreactors for three-dimensional (3D) multicellular spheroid culture are now considered as the next generation in in vitro diagnostic tools. The feasibility of using 3D cell aggregates to form multicellular spheroids in a microbioreactor with U-shaped barriers has been demonstrated experimentally. A barrier array is an alternative to commonly used microwell traps. The present study investigates oxygen and glucose concentration distributions as key parameters in a U-shaped array microbioreactor using finite element simulation. The effect of spheroid diameter, inlet concentration and flow rate of the medium... 

    Three-dimensional modeling of avascular tumor growth in both static and dynamic culture platforms

    , Article Micromachines ; Volume 10, Issue 9 , 2019 ; 2072666X (ISSN) Taghibakhshi, A ; Barisam, M ; Saidi, M. S ; Kashaninejad, N ; Nguyen, N. T ; Sharif University of Technology
    MDPI AG  2019
    Abstract
    Microfluidic cell culture platforms are ideal candidates for modeling the native tumor microenvironment because they can precisely reconstruct in vivo cellular behavior. Moreover, mathematical modeling of tumor growth can pave the way toward description and prediction of growth pattern as well as improving cancer treatment. In this study, a modified mathematical model based on concentration distribution is applied to tumor growth in both conventional static culture and dynamic microfluidic cell culture systems. Apoptosis and necrosis mechanisms are considered as the main inhibitory factors in the model, while tumor growth rate and nutrient consumption rate are modified in both quiescent and... 

    A tool for designing tree-like concentration gradient generators for lab-on-a-chip applications

    , Article Chemical Engineering Science ; Volume 212 , 2020 Ebadi, M ; Moshksayan, K ; Kashaninejad, N ; Saidi, M. S ; Nguyen, N. T ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Concentration gradient generators (CGGs) help biologists to perform large scale, fast and high-throughput experiments. This paper introduces a design tool called Tree-like Concentration gradient generator Design Tool (TCDT). The performance of this tool is validated both numerically and experimentally. Three CGGs were fabricated using three different fabrication methods and design parameters. The performance of these devices was examined using the measurement of fluorescent and dye intensity. The performance of the design tool for non-linear and multi-drug concentration gradient generations was investigated as well. In addition, a method was developed to investigate the multi-drug... 

    Simple, Cost-effective, and continuous 3D dielectrophoretic microchip for concentration and separation of bioparticles

    , Article Industrial and Engineering Chemistry Research ; Volume 59, Issue 9 , 2020 , Pages 3772-3783 Tajik, P ; Saidi, M. S ; Kashaninejad, N ; Nguyen, N. T ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    Dielectrophoresis is a robust approach for manipulating bioparticles in microfluidic devices. In recent years, many groups have developed dielectrophoresis-based microfluidic systems for separation and concentration of various types of bioparticles, where the gradient of the electric field causes dielectrophoresis force acting on the suspended particles. Enhancing the gradient of the electric field with three-dimensional (3D) electrodes can significantly improve the efficiency of the system. Implementing planar electrodes in a 3D arrangement is a simple option to form a 3D-electrode configuration. This paper reports the development of a novel dielectrophoretic microfluidic system for... 

    An interface–particle interaction approach for evaluation of the co-encapsulation efficiency of cells in a flow-focusing droplet generator

    , Article Sensors (Switzerland) ; Volume 20, Issue 13 , 2020 , Pages 1-17 Yaghoobi, M ; Saidi, M. S ; Ghadami, S ; Kashaninejad, N ; Sharif University of Technology
    MDPI AG  2020
    Abstract
    Droplet-based microfluidics offers significant advantages, such as high throughput and scalability, making platforms based on this technology ideal candidates for point-of-care (POC) testing and clinical diagnosis. However, the efficiency of co-encapsulation in droplets is suboptimal, limiting the applicability of such platforms for the biosensing applications. The homogeneity of the bioanalytes in the droplets is an unsolved problem. While there is extensive literature on the experimental setups and active methods used to increase the efficiency of such platforms, passive techniques have received less attention, and their fundamentals have not been fully explored. Here, we develop a novel... 

    High-throughput, label-free isolation of white blood cells from whole blood using parallel spiral microchannels with u-shaped cross-section

    , Article Biosensors ; Volume 11, Issue 11 , 2021 ; 20796374 (ISSN) Mehran, A ; Rostami, P ; Saidi, M. S ; Firoozabadi, B ; Kashaninejad, N ; Sharif University of Technology
    MDPI  2021
    Abstract
    Rapid isolation of white blood cells (WBCs) from whole blood is an essential part of any WBC examination platform. However, most conventional cell separation techniques are labor-intensive and low throughput, require large volumes of samples, need extensive cell manipulation, and have low purity. To address these challenges, we report the design and fabrication of a passive, label-free microfluidic device with a unique U-shaped cross-section to separate WBCs from whole blood using hydrodynamic forces that exist in a microchannel with curvilinear geometry. It is shown that the spiral microchannel with a U-shaped cross-section concentrates larger blood cells (e.g., WBCs) in the inner... 

    Novel approaches in cancer management with circulating tumor cell clusters

    , Article Journal of Science: Advanced Materials and Devices ; Volume 4, Issue 1 , 2019 , Pages 1-18 ; 24682284 (ISSN) Rostami, P ; Kashaninejad, N ; Moshksayan, K ; Saidi, M. S ; Firoozabadi, B ; Nguyen, N. T ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Tumor metastasis is responsible for the vast majority of cancer-associated morbidities and mortalities. Recent studies have disclosed the higher metastatic potential of circulating tumor cell (CTC) clusters than single CTCs. Despite long-term study on metastasis, the characterizations of its most potent cellular drivers, i.e., CTC clusters have only recently been investigated. The analysis of CTC clusters offers new intuitions into the mechanism of tumor metastasis and can lead to the development of cancer diagnosis and prognosis, drug screening, detection of gene mutations, and anti-metastatic therapeutics. In recent years, considerable attention has been dedicated to the development of... 

    Spheroids-on-a-chip: recent advances and design considerations in microfluidic platforms for spheroid formation and culture

    , Article Sensors and Actuators, B: Chemical ; Volume 263 , 15 June , 2018 , Pages 151-176 ; 09254005 (ISSN) Moshksayan, K ; Kashaninejad, N ; Ebrahimi Warkiani, M ; Lock, J. G ; Moghadas, H ; Firoozabadi, B ; Saidi, M. S ; Nguyen, N. T ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    A cell spheroid is a three-dimensional (3D) aggregation of cells. Synthetic, in-vitro spheroids provide similar metabolism, proliferation, and species concentration gradients to those found in-vivo. For instance, cancer cell spheroids have been demonstrated to mimic in-vivo tumor microenvironments, and are thus suitable for in-vitro drug screening. The first part of this paper discusses the latest microfluidic designs for spheroid formation and culture, comparing their strategies and efficacy. The most recent microfluidic techniques for spheroid formation utilize emulsion, microwells, U-shaped microstructures, or digital microfluidics. The engineering aspects underpinning spheroid formation...