Loading...
Search for: khani--a--a
0.142 seconds

    Effect of sectionalizing switches malfunction probability on optimal switches placement in distribution networks

    , Article International Journal of Electrical Power and Energy Systems ; Volume 119 , July , 2020 Khani, M ; Safdarian, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Sectionalizing switches (SSs) are installed in distribution networks to provide ring and maneuver points, thereby increasing service reliability. These switches are either manual switches (MSs) or remote controlled switches (RCSs). The switches are usually assumed to be fully reliable. However, in practice, their performance is not always ideal. Actually, the switches may sometimes experience malfunction, which reduces their ability to enhance system reliability. The present study proposes a model to consider the malfunction possibility of the switches in their optimal placement problem. The model helps to minimize the total costs of SSs as well as the interruption costs incurred by... 

    An algorithm for discovering clusters of different densities or shapes in noisy data sets

    , Article Proceedings of the ACM Symposium on Applied Computing ; March , 2013 , Pages 144-149 ; 9781450316569 (ISBN) Khani, F ; Hosseini, M. J ; Abin, A. A ; Beigy, H ; Sharif University of Technology
    2013
    Abstract
    In clustering spatial data, we are given a set of points in Rn and the objective is to find the clusters (representing spatial objects) in the set of points. Finding clusters with different shapes, sizes, and densities in data with noise and potentially outliers is a challenging task. This problem is especially studied in machine learning community and has lots of applications. We present a novel clustering technique, which can solve mentioned issues considerably. In the proposed algorithm, we let the structure of the data set itself find the clusters, this is done by having points actively send and receive feedbacks to each other. The idea of the proposed method is to transform the input... 

    Performance evaluation of a modular design ofwind tower withwetted surfaces

    , Article Energies ; Volume 10, Issue 7 , 2017 ; 19961073 (ISSN) Khani, S. M. R ; Bahadori, M. N ; Dehghani Sanij, A ; Nourbakhsh, A ; Sharif University of Technology
    MDPI AG  2017
    Abstract
    Wind towers or wind catchers, as passive cooling systems, can provide natural ventilation in buildings located in hot, arid regions. These natural cooling systems can provide thermal comfort for the building inhabitants throughout the warm months. In this paper, a modular design of a wind tower is introduced. The design, called a modular wind tower with wetted surfaces, was investigated experimentally and analytically. To determine the performance of the wind tower, air temperature, relative humidity (RH) and air velocity were measured at different points. Measurements were carried out when the wind speed was zero. The experimental results were compared with the analytical ones. The results... 

    Towards automatic prostate gleason grading via deep convolutional neural networks

    , Article 5th Iranian Conference on Signal Processing and Intelligent Systems, ICSPIS 2019, 18 December 2019 through 19 December 2019 ; 2019 ; 9781728153506 (ISBN) Khani, A. A ; Fatemi Jahromi, S. A ; Otroshi Shahreza, H ; Behroozi, H ; Baghshah, M. S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Prostate Cancer has become one of the deadliest cancers among males in many nations. Pathologists use various approaches for the detection and the staging of prostate cancer. Microscopic inspection of biopsy tissues is the most accurate approach among them. The Gleason grading system is used to evaluate the stage of Prostate Cancer using prostate biopsy samples. The task of assigning a grade to each region in a tissue is a time-consuming task. Furthermore, this task often has several challenges since it has considerable inter-observer variability even among expert pathologists. In this paper, we propose an automatic method for this task using a deep learningbased approach. For this purpose,... 

    Experimental investigation of a modular wind tower in hot and dry regions

    , Article Energy for Sustainable Development ; Volume 39 , 2017 , Pages 21-28 ; 09730826 (ISSN) M. R. Khani, S ; Bahadori, M. N ; Dehghani Sanij, A. R ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Passive cooling systems such as wind towers or wind catchers can create thermal comfort for building residents in hot and dry regions. This paper introduces an experimental study of a modular design of wind tower called the modular wind tower with wetted surfaces. Air temperature, relative humidity (RH) and airflow velocity parameters were measured at different times and at points when the velocity of the ambient air was zero. The results show that the modular wind tower can decrease the air temperature by an average of 10 °C and increase the relative humidity of airflow in a building by approximately 36% on average. Additionally, the wind tower can create the airflow velocity entering the... 

    Distributed Cardiovascular System Modeling

    , M.Sc. Thesis Sharif University of Technology Khani, Mehrdad (Author) ; Jahed, Mehran (Supervisor)
    Abstract
    Simulation of cardiovascular system functionality during various physiological conditions is essential at different diagnostic and clinical levels. A first step in studying the roots of cardiovascular diseases and abnormal activity is to study a practical yet complete model of the cardiovascular system. In this thesis we introduced a new approach for defining the distributed model of the cardiovascular system. Initially, we chose an appropriate subsystem, namely Arch of Aorta, and proposed a distributed model for it. The elements of the proposed model were nonlinear RLC elements that simulate resistance, blood viscosity and vessel elasticity respectively. To minimize the system complexity,... 

    Coordinated Scheduling in Public Transportation by Aim of Transfer Time Reduce

    , M.Sc. Thesis Sharif University of Technology Khani, Alireza (Author) ; Shafahi, Yusof (Supervisor)
    Abstract
    The thesis is about transit network scheduling problem and aims to minimize waiting time at transfer stations. The problem is formulated as a mixed integer programing model that gives departure times of vehicles in lines so that passengers can transfer between lines at transfer stations with minimum waiting time. The model is expanded to another model by considering an extra stoping time of vehicles at transfer stations as a new variable set. By calculationg the optimal value for these variables, transfers could be done in a better condition. The sizes of the models are small enough that the models can be solved for small and medium size networks using regular MIP solvers. Moreover, a... 

    Transfer optimization in transit networks: Headway and departure time coordination

    , Article IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC ; 2011 , Pages 1531-1536 ; 9781457721984 (ISBN) Khani, A ; Shafahi, Y ; Sharif University of Technology
    2011
    Abstract
    This paper studies the scheduling problem in transit networks in order to decrease transfer waiting time. Transfer waiting time is calculated based on headway and departure time of intersecting routes and is divided into two parts. The first part can be reduced by changing departure times and was studied by the authors previously. The focus of the present research, however, is to minimize the second part of the transfer waiting time, dependent on the headways. The proposed optimization model in this paper includes both parts and is a nonlinear mathematical programming model. The model is decomposed to the departure time setting model (DSM) and the headway setting model (HSM). A solution... 

    Robust model predictive control of nonlinear processes represented by Wiener or Hammerstein models

    , Article Chemical Engineering Science ; Volume 129 , 2015 , Pages 223-231 ; 00092509 (ISSN) Khani, F ; Haeri, M ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Representing nonlinear systems by linear models along with structured or unstructured uncertainties and applying robust control strategies could reduce the computational complexity in comparison with implementing the nonlinear model predictive controllers. In this paper design of robust model predictive controllers which are based on special classes of nonlinear systems representations called Wiener and Hammerstein are presented. The proposed algorithms approximate the nonlinear systems by uncertain linear models and reduce online the computational demands in the control implementation. The advantages of the proposed approaches are illustrated by two examples  

    Smooth switching in a scheduled robust model predictive controller

    , Article Journal of Process Control ; Volume 31 , 2015 , Pages 55-63 ; 09591524 (ISSN) Khani, F ; Haeri, M ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Abstract This paper proposes a bumpless transfer method to overcome the problem of switching jumps in a scheduled robust model predictive control approach. A scheduled robust model predictive controller implements a set of local robust model predictive controllers based on an on-line switching strategy. This method could enlarge the domain of attraction efficiently but the transient response might be hampered by spikes appearing at the moment of switching between adjacent local controllers. The proposed algorithm could enhance the transient response by implementing some intermediate controllers augmented to the main control scheme to solve the problem without needing more computation. The... 

    Constrained tracking control for nonlinear systems

    , Article ISA Transactions ; Volume 70 , 2017 , Pages 64-72 ; 00190578 (ISSN) Khani, F ; Haeri, M ; Sharif University of Technology
    2017
    Abstract
    This paper proposes a tracking control strategy for nonlinear systems without needing a prior knowledge of the reference trajectory. The proposed method consists of a set of local controllers with appropriate overlaps in their stability regions and an on-line switching strategy which implements these controllers and uses some augmented intermediate controllers to ensure steering the system states to the desired set points without needing to redesign the controller for each value of set point changes. The proposed approach provides smooth transient responses despite switching among the local controllers. It should be mentioned that the stability regions of the proposed controllers could be... 

    A novel multi-access scheme for UWB-PPM communication systems

    , Article European Transactions on Telecommunications ; Volume 18, Issue 4 , 2007 , Pages 389-401 ; 1124318X (ISSN) Khani, H ; Azmi, P ; Sharif University of Technology
    2007
    Abstract
    In this paper, it is shown that some spikes exist in power spectral density (PSD) of ultra-wideband-time-hopping-pulse-position-modulation (UWB-TH-PPM) transmitted signal. Analytical and numerical simulation results show that these spikes severely degrade UWB-TH-PPM system bit-error-rate performance and must be properly removed. This paper proposes a novel multi-access scheme that uses both direct-sequence (DS) and time-hopping (TH) multi-access schemes to remove these harmful spikes. Analytical and numerical simulation results show that the proposed scheme removes the spikes from the PSD of the UWB-TH-PPM transmitted signal and yields better performance. In this paper, the performance of... 

    Enlarging the region of stability in robust model predictive controller based on dual-mode control

    , Article Transactions of the Institute of Measurement and Control ; Volume 43, Issue 14 , 2021 , Pages 3085-3092 ; 01423312 (ISSN) Khani, F ; Haeri, M ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    Industrial processes are inherently nonlinear with input, state, and output constraints. A proper control system should handle these challenging control problems over a large operating region. The robust model predictive controller (RMPC) could be an linear matrix inequality (LMI)-based method that estimates stability region of the closed-loop system as an ellipsoid. This presentation, however, restricts confident application of the controller on systems with large operating regions. In this paper, a dual-mode control strategy is employed to enlarge the stability region in first place and then, trajectory reversing method (TRM) is employed to approximate the stability region more accurately.... 

    Modeling of the mutual effect of dynamic precipitation and dislocation density in age hardenable aluminum alloys

    , Article Journal of Alloys and Compounds ; Volume 683 , 2016 , Pages 527-532 ; 09258388 (ISSN) Khani Moghanaki, S ; Kazeminezhad, M ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    A model has been proposed to capture the complex strain rate effect on dynamic precipitation of GP zones in an age-hardenable aluminum alloy. The contributions of vacancies and dislocations to dynamically formed GP zones have been specified in the model. It has been demonstrated that the proposed model is capable for predicting the contribution of each dynamic precipitation mechanisms, accurately, which are acting during deformation. Furthermore, the vacancy and dislocation evolutions during deformation have been considered in this modeling. The effect of strain rate by considering different mechanisms of dynamic precipitation of GP zones has been studied and confirmed by experimental data... 

    Effects of non-isothermal annealing on microstructure and mechanical properties of severely deformed 2024 aluminum alloy

    , Article Transactions of Nonferrous Metals Society of China (English Edition) ; Volume 27, Issue 1 , 2017 , Pages 1-9 ; 10036326 (ISSN) Khani Moghanaki, S ; Kazeminezhad, M ; Sharif University of Technology
    Nonferrous Metals Society of China  2017
    Abstract
    Microstructure and mechanical properties of AA2024 after severe plastic deformation (SPD) and non-isothermal annealing were investigated. The non-isothermal treatment was carried out on the severely deformed AA2024, and the interaction between restoration and precipitation phenomena was investigated. Differential scanning calorimetry, hardness and shear punch tests illustrate that static recovery and dissolution of GPB zones/Cu–Mg co-clusters occur concurrently through non-isothermal annealing. Scanning electron microscope and electron backscatter diffraction illustrate that non-isothermal annealing of deformed AA2024 up to 250 °C promotes the particle-free regions and also particle... 

    Computational modeling of media flow through perfusion-based bioreactors for bone tissue engineering

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 234, Issue 12 , 2020 , Pages 1397-1408 Nokhbatolfoghahaei, H ; Bohlouli, M ; Adavi, K ; Paknejad, Z ; Rezai Rad, M ; khani, M. M ; Salehi-Nik, N ; Khojasteh, A ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    Bioreactor system has been used in bone tissue engineering in order to simulate dynamic nature of bone tissue environments. Perfusion bioreactors have been reported as the most efficient types of shear-loading bioreactor. Also, combination of forces, such as rotation plus perfusion, has been reported to enhance cell growth and osteogenic differentiation. Mathematical modeling using sophisticated infrastructure processes could be helpful and streamline the development of functional grafts by estimating and defining an effective range of bioreactor settings for better augmentation of tissue engineering. This study is aimed to conduct computational modeling for newly designed bioreactors in... 

    Design and Implementation of a Multi-Standard Crypto-Processor

    , M.Sc. Thesis Sharif University of Technology Bahadori, Milad (Author) ; Sharif Khani, Mohammad (Supervisor)
    Abstract
    The crypto-processors are used for encryption and decryption of the sensitive and important information. A crypto-processor converts input plaintext to ciphertext by an input key using a particular cryptographic algorithm. It also converts ciphertext to plaintext by the same or another key. Cryptographic standards are divided in two types: symmetric key algorithms (private key) and asymmetric key algorithms (public key). Current processors generally support only one or a few number of cryptographic algorithms. The motivation of this project is design and implementation of a multi-standard crypto-processor which supports the most of symmetric and asymmetric cryptographic algorithms, such as... 

    Physician Induced Demand Case Study of Caesarean Section in Iran

    , M.Sc. Thesis Sharif University of Technology Khani, Mohammad (Author) ; Fatemi Ardestani, Farshad (Supervisor)
    Abstract
    In standard models, the demand function is considered to be independent from the supply function and the intersection of these curves is considered to determine the price and quantity in the market. The alternative model, called “inducement hypothesis”, describes how the supply side can persuade consumers through particular advices, induce demand for the provided services and though shift the demand curve; i.e. demand is not independent from supply. For the case of physicians, this hypothesis is known as “physician induced demand”. In fact, this theory describes the supply-side moral hazard in the production market. This hypothesis may have vast applications which are different from... 

    , M.Sc. Thesis Sharif University of Technology Miraki, Mohammad (Author) ; Sharif Khani, Mohammad (Supervisor)
    Abstract
    With the advancement of the technology, Design of low power devices such as biomedical systems, wireless sensor network, portable devices and … has received more attention. Digitally controlled oscillator (DCO) is one of the sub-blocks in systems such as all digital phase locked loop (ADPLL) which consumes the major power of the system. Therefore, Design of a low power DCO will decrease the power consumption of the system significantly.
    In this thesis, a digital control oscillator which is ultra low power is design for system on chip applications. Coarse-Fine architecture is used with binary weighted cells in this design. For the Coarse tuning stage, a new delay cell is proposed which... 

    Circuit and Systematic Design of Low Power SAR ADC

    , M.Sc. Thesis Sharif University of Technology Yazdani, Behnam (Author) ; Sharif Khani, Mohammad (Supervisor)
    Abstract
    Low power and high speed analog-to-digital converters (ADCs) are the key elements of communication and computing systems. There are several ADC structures such as delta-sigma, flash, pipeline, and successive approximation register (SAR) for different applications, albeit SAR ADCs are natural candidates of onchip designs for their low power and scalability benefits. Nowadays, SAR ADCs are widely being used in low-power moderate-resolution applications which need several tens of MS/s to low GS/s sampling rates. By virtue of the technology scaling power consumption of digital parts of a SAR ADC is reduced significantly. As a result, in a SAR ADC the power consumption of the digital-to-analog...