Loading...
Search for: kiani--k
0.004 seconds

    A model for the evolution of concrete deterioration due to reinforcement corrosion

    , Article Mathematical and Computer Modelling ; Volume 52, Issue 9-10 , November , 2010 , Pages 1403-1422 ; 08957177 (ISSN) Shodja, H. M ; Kiani, K ; Hashemian, A ; Sharif University of Technology
    2010
    Abstract
    One of the most crucial factors affecting the service life of reinforced concrete (RC) structures attacked by aggressive ions is reinforcement corrosion. As the steel corrosion progresses, crack propagation in concrete medium endangers the serviceability and the strength of RC structural members. In this study, a nonlinear mathematical model for determining the displacement and stress fields in RC structures subjected to reinforcement corrosion is introduced. For corrosion products, a nonlinear stress-strain relation which has been previously confirmed by experimental data is incorporated in the present analysis. In formulation of the governing equations for steel-rust-concrete composite,... 

    Dynamic response of euler-Bernoulli, Timoshenko and higher-Order beams under a moving mass via RKPM

    , Article 7th European Conference on Structural Dynamics, EURODYN 2008, 7 July 2008 through 9 July 2008 ; 2008 ; 9780854328826 (ISBN) Nikkhoo, A ; Kiani, K ; Mehri, B ; Sharif University of Technology
    University of Southampton, Institute of Sound Vibration and Research  2008
    Abstract
    Discrete motion equations of an Euler-Bernoulli, Timoshenko and higher-order beams under a moving mass are derived for different boundary conditions. To this end, the reproducing kernel particle method (RKPM) has been utilized for spatial discretization, beside the extension of Newmark-β method for time discretization of the beams motion equations. The effects of significant parameters such as the beam's slenderness and velocity of the moving mass on the maximum deflection and bending moment of different beams are studied in some details. The results indicate the existence of a critical beam's slenderness mostly as a function of beam's boundary conditions, in which for slenderness lower than... 

    A new online random particles optimization algorithm for mobile robot path planning in dynamic environments

    , Article Mathematical Problems in Engineering ; Volume 2013 , 2013 ; 1024123X (ISSN) Mohajer, B ; Kiani, K ; Samiei, E ; Sharifi, M ; Sharif University of Technology
    2013
    Abstract
    A new algorithm named random particle optimization algorithm (RPOA) for local path planning problem of mobile robots in dynamic and unknown environments is proposed. The new algorithm inspired from bacterial foraging technique is based on particles which are randomly distributed around a robot. These particles search the optimal path toward the target position while avoiding the moving obstacles by getting help from the robot's sensors. The criterion of optimal path selection relies on the particles distance to target and Gaussian cost function assign to detected obstacles. Then, a high level decision making strategy will decide to select best mobile robot path among the proceeded particles,... 

    Simulation of DBD plasma actuator effect on aerodynamic performance improvement using a modified phenomenological model

    , Article Computers and Fluids ; Volume 140 , 2016 , Pages 371-384 ; 00457930 (ISSN) Mazaheri, K ; Omidi, J ; Chaharlang Kiani, K ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    An improved phenomenological model is presented for numerical simulation of a Dielectric Barrier Discharge (DBD) plasma actuator for separation control of high angle of attack flow over a wind turbine airfoil. Based on existing numerical models and experimental measurements, a new model is proposed for prediction of the length of a plasma extent which is more consistent with previous observations. The electrical and hydrodynamic solvers used in the present study are validated against published experimental data. Then the applicability of a DBD actuator, mounted on a DU 91-W2-250 airfoil is extensively analyzed for a wide range of operating voltages and frequencies. The analysis is completely... 

    Application of the adjoint multi-point and the robust optimization of shock control bump for transonic aerofoils and wings

    , Article Engineering Optimization ; Volume 48, Issue 11 , 2016 , Pages 1887-1909 ; 0305215X (ISSN) Mazaheri, K ; Nejati, A ; Chaharlang Kiani, K ; Sharif University of Technology
    Taylor and Francis Ltd 
    Abstract
    A shock control bump (SCB) is a flow control method which uses a local small deformation in a flexible wing surface to considerably reduce the strength of shock waves and the resulting wave drag in transonic flows. Most of the reported research is devoted to optimization in a single flow condition. Here, both equally and variably weighted multi-point optimization and a robust adjoint optimization scheme are used to optimize the SCB. The numerical simulation of the turbulent viscous flow and a gradient-based adjoint algorithm are used to find the optimum location and shape of the SCB for two benchmark aerofoils. A multi-point optimization method under a constant-lift-coefficient constraint is... 

    A coupled adjoint formulation for non-cooled and internally cooled turbine blade optimization

    , Article Applied Thermal Engineering ; Volume 105 , 2016 , Pages 327-335 ; 13594311 (ISSN) Zeinalpour, M ; Mazaheri, K ; Chaharlang Kiani, K ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Most researches on the application of the adjoint method in turbine blade design are concentrated on the aerodynamic shape optimization without considering the heat transfer to/from the blade material. In this study, the adjoint method is extended to the conjugate heat transfer problems in which the viscous flow field is coupled to heat transfer in the solid region. Introducing a new adjoint variable in the solid domain, a heat adjoint equation is derived which is coupled with the energy adjoint equation in the fluid zone at the fluid/solid interface. The detailed mathematical description associated with the derivation of the heat adjoint equation with corresponding boundary conditions are... 

    A modified turbulent heat-flux model for predicting heat transfer in separating-reattaching flows and film cooling applications

    , Article Applied Thermal Engineering ; Volume 110 , 2017 , Pages 1609-1623 ; 13594311 (ISSN) Mazaheri, K ; Chaharlang Kiani, K ; Karimi, M ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The present study addresses a new effort to improve the prediction of the thermal field in separating-reattaching flows by making modifications in a low-Reynolds-number (LRN) version of HOGGDH heat-flux model proposed by Suga and Abe (2000). The modifications are based on introducing non-equilibrium effects of hydrodynamic flow field in the heat-flux model. Using an analytical approach, we have implemented P/ε, ignored in the base version, to the modified version. To do so, the model structure was changed and a damping function which is more sensitive to non-equilibrium flow features is also applied to the model. The modified heat-flux formulation along with a second moment closure... 

    The application of suction and blowing in performance improvement of transonic airfoils with shock control bump

    , Article Scientia Iranica ; Volume 24, Issue 1 , 2017 , Pages 274-292 ; 10263098 (ISSN) Mazaheri, K ; Nejati, A ; Charlang Kiani, K. C ; Sharif University of Technology
    Sharif University of Technology  2017
    Abstract
    Shock Control Bump (SCB) reduces the wave drag in transonic ight. To control the boundary layer separation and to reduce the wave drag for two transonic airfoils, RAE-2822 and NACA-64A010, we investigate the application of two flow control methods, i.e. suction and blowing, to add them to the SCB. An adjoint gradient-based optimization algorithm is used to find the optimum shape and location of SCB. The performance of both Hybrid Suction/SCB (HSS) and Hybrid Blowing/SCB (HBS) is a function of the sucked or injected mass flow rate and their position. A parametric study is performed to find the near optimum values of the aerodynamic coefficients and efficiency. A RANS solver is validated and... 

    Application of a modified algebraic heat-flux model and second-moment-closure to high blowing-ratio film-cooling and corrugated heat-exchanger simulations

    , Article Applied Thermal Engineering ; Volume 124 , 2017 , Pages 948-966 ; 13594311 (ISSN) Mazaheri, K ; Chaharlang Kiani, K ; Karimi, M ; Sharif University of Technology
    Abstract
    The present paper outlines the application of the recently proposed heat-flux model (Mazaheri et al., 2017) to high blowing-ratio film-cooling and corrugated heat-exchanger simulations. Here, the focus is mainly on the accuracy of the predicted thermal fields, while to find out the sources of inaccuracy detailed analysis of the adopted second-moment-closure hydrodynamic model is provided. To do so, fundamental benchmarks which contain the dominant phenomena in the main cases are thoroughly analyzed to identify the anomalies. Then, the main cases including leading-edge film-cooling, antivortex film-cooling and corrugated heat-exchanger are investigated. The numerical predictions indicate that... 

    The application of the gradient-based adjoint multi-point optimization of single and double shock control bumps for transonic airfoils

    , Article Shock Waves ; 2015 ; 09381287 (ISSN) Mazaheri, K ; Nejati, A ; Chaharlang Kiani, K ; Taheri, R ; Sharif University of Technology
    Springer New York LLC  2015
    Abstract
    A shock control bump (SCB) is a flow control method which uses local small deformations in a flexible wing surface to considerably reduce the strength of shock waves and the resulting wave drag in transonic flows. Most of the reported research is devoted to optimization in a single flow condition. Here, we have used a multi-point adjoint optimization scheme to optimize shape and location of the SCB. Practically, this introduces transonic airfoils equipped with the SCB which are simultaneously optimized for different off-design transonic flight conditions. Here, we use this optimization algorithm to enhance and optimize the performance of SCBs in two benchmark airfoils, i.e., RAE-2822 and... 

    The application of the gradient-based adjoint multi-point optimization of single and double shock control bumps for transonic airfoils

    , Article Shock Waves ; Volume 26, Issue 4 , 2016 , Pages 491-511 ; 09381287 (ISSN) Mazaheri, K ; Nejati, A ; Chaharlang Kiani, K ; Taheri, R ; Sharif University of Technology
    Springer New York LLC 
    Abstract
    A shock control bump (SCB) is a flow control method that uses local small deformations in a flexible wing surface to considerably reduce the strength of shock waves and the resulting wave drag in transonic flows. Most of the reported research is devoted to optimization in a single flow condition. Here, we have used a multi-point adjoint optimization scheme to optimize shape and location of the SCB. Practically, this introduces transonic airfoils equipped with the SCB that are simultaneously optimized for different off-design transonic flight conditions. Here, we use this optimization algorithm to enhance and optimize the performance of SCBs in two benchmark airfoils, i.e., RAE-2822 and... 

    Erratum to: The application of the gradient-based adjoint multi-point optimization of single and double shock control bumps for transonic airfoils

    , Article Shock Waves ; Volume 26, Issue 4 , 2016 , Pages 533- ; 09381287 (ISSN) Mazaheri, K ; Nejati, A ; Kiani, K. C ; Taheri, R ; Sharif University of Technology
    Springer New York LLC 
    Abstract
    Unfortunately, in the original online publication of the article, the quantity ω was incorrectly typeset as w in Eqs. (40) and (41). In Eq. (40), the subscript K was incorrectly typeset as k. The original publication of the article has been updated to reflect these changes