Loading...
Search for: kowsari-esfahan--r
0.005 seconds

    Spiral microchannel with stair-like cross section for size-based particle separation

    , Article Microfluidics and Nanofluidics ; Volume 21, Issue 7 , 2017 ; 16134982 (ISSN) Ghadami, S ; Kowsari Esfahan, R ; Saidi, M. S ; Firoozbakhsh, K ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    Particle separation has a variety of applications in biology, chemistry and industry. Among them, circulating tumor cells (CTCs) separation has drawn significant attention to itself due to its high impact on both cancer diagnosis and therapeutics. In recent years, there has been growing interest in using inertial microfluidics to separate micro/nano particles based on their sizes. This technique offers label-free, high-throughput and efficient separation and can be easily fabricated. However, further improvements are needed for potential clinical applications. In this study, a novel inertial separation technique using spiral microchannel having stair-like cross section is introduced. The... 

    Induced cell migration based on a bioactive hydrogel sheet combined with a perfused microfluidic system

    , Article Biomedical Materials (Bristol) ; Volume 15, Issue 4 , May , 2020 Jafarkhani, M ; Jafarkhani, M ; Salehi, Z ; Mashayekhan, S ; Kowsari Esfahan, R ; Dolatshahi Pirouz, A ; Bonakdar, S ; Shokrgozar, M. A ; Sharif University of Technology
    Institute of Physics Publishing  2020
    Abstract
    Endothelial cell migration is a crucial step in the process of new blood vessel formation - a necessary process to maintain cell viability inside thick tissue constructs. Here, we report a new method for maintaining cell viability and inducing cell migration using a perfused microfluidic platform based on collagen gel and a gradient hydrogel sheet. Due to the helpful role of the extracellular matrix components in cell viability, we developed a hydrogel sheet from decellularized tissue (DT) of the bovine heart and chitosan (CS). The results showed that hydrogel sheets with an optimum weight ratio of CS/DT = 2 possess a porosity of around 75%, a mechanical strength of 23 kPa, and display cell...