Loading...
Search for: madadelahi--m
0.122 seconds

    Designing and modeling a centrifugal microfluidic device to separate target blood cells

    , Article Journal of Micromechanics and Microengineering ; Volume 26, Issue 3 , 2016 ; 09601317 (ISSN) Shamloo, A ; Selahi, Aa ; Madadelahi, M ; Sharif University of Technology
    Institute of Physics Publishing  2016
    Abstract
    The objective of this study is to design a novel and efficient portable lab-on-a-CD (LOCD) microfluidic device for separation of specific cells (target cells) using magnetic beads. In this study the results are shown for neutrophils as target cells. However, other kinds of target cells can be separated in a similar approach. The designed microfluidics can be utilized as a point of care system for neutrophil detection. This microfluidic system employs centrifugal and magnetic forces for separation. After model validation by the experimental data in the literature (that may be used as a design tool for developing centrifugo-magnetophoretic devices), two models are presented for separation of... 

    Droplet-based flows in serpentine microchannels: chemical reactions and secondary flows

    , Article International Journal of Multiphase Flow ; Volume 97 , 2017 , Pages 186-196 ; 03019322 (ISSN) Madadelahi, M ; Shamloo, A ; Sharif University of Technology
    2017
    Abstract
    Mixing is an essential operation in many microfluidic devices. Droplet-based micromixers utilize droplets for mixing enhancement. In the present study, a novel three-dimensional simulation is conducted which has the ability to capture not only the mixing process, but also the chemical reactions inside liquid droplets. This two-phase model is used for simulating the reacting flow inside a serpentine microchannel and explores the effects of droplet size and reaction rate on the production and consumption of species in droplets. It is observed that the chemical reaction in each droplet, begins from its front area. Furthermore, it is shown that the production of species does not depend on water... 

    Newtonian and generalized Newtonian reacting flows in serpentine microchannels: pressure driven and centrifugal microfluidics

    , Article Journal of Non-Newtonian Fluid Mechanics ; Volume 251 , January , 2018 , Pages 88-96 ; 03770257 (ISSN) Madadelahi, M ; Shamloo, A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    This paper presents a comprehensive 3D numerical simulation of reacting flows in micro scale dimension through centrifugal, or Lab-On-a-CD (LOCD), and pressure-driven, or Lab-On-a-Chip (LOC) devices. Three different serpentine channel configurations (rectangular, triangular and sinusoidal) are investigated. In these configurations, two chemical species enter from two inlets and according to an irreversible chemical reaction, start yielding other species. Both Newtonian and generalized Newtonian fluids are considered in the simulations and the results are compared for both LOC and LOCD devices. Besides, the effects of different parameters such as the aspect ratio of channels’ cross section,... 

    Designing a polymerase chain reaction device working with radiation and convection heat transfer

    , Article 2017 International Conference on Nanomaterials and Biomaterials, ICNB 2017, 11 December 2017 through 13 December 2017 ; Volume 350, Issue 1 , 2018 ; 17578981 (ISSN) Madadelahi, M ; Kalan, K ; Shamloo, A ; Sharif University of Technology
    Institute of Physics Publishing  2018
    Abstract
    Gene proliferation is vital for infectious and genetic diseases diagnosis from a blood sample, even before birth. In addition, DNA sequencing, genetic finger-print analyzing, and genetic mutation detecting can be mentioned as other procedures requiring gene reproduction. Polymerase chain reaction, briefly known as PCR, is a convenient and effective way to accomplish this task; where the DNA containing sample faces three temperature phases alternatively. These phases are known as denaturation, annealing, and elongation/extension which in this study -regarding the type of the primers and the target DNA sequence- are set to occur at 95, 58, and 72 degrees of Celsius. In this study, a PCR device... 

    Design and fabrication of a two-phase diamond nanoparticle aided fast PCR device

    , Article Analytica Chimica Acta ; Volume 1068 , 2019 , Pages 28-40 ; 00032670 (ISSN) Madadelahi, M ; Ghazimirsaeed, E ; Shamloo, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Polymerase Chain Reaction (PCR) is an important and prevalent technique in biotechnology because of its crucial role in cloning DNA fragments and diagnostic applications. In the present study, a high-throughput two-phase PCR device is designed and fabricated which utilizes a serpentine microchannel together with a spiral structure. The former is for the droplet-generation and mixing and the latter is for the thermal cycling process. Moreover, the effect of diamond nanoparticles (diamondNP) on the performance of PCR is also investigated while using commercial PCR devices and the fabricated PCR device designed in this study. Using numerical simulation, it is shown that within the simple and... 

    Fluidic barriers in droplet-based centrifugal microfluidics: Generation of multiple emulsions and microspheres

    , Article Sensors and Actuators, B: Chemical ; Volume 311 , May , 2020 Madadelahi, M ; Madou, M. J ; Dorri Nokoorani, Y ; Shamloo, A ; Martinez Chapa, S. O ; Sharif University of Technology
    Elsevier B. V  2020
    Abstract
    Droplet generation is very important in biochemical processes such as cell encapsulation, digital PCR (Polymerase Chain Reaction), and drug delivery. In the present paper, a density-based method called “fluidic barrier” is introduced to produce multiple emulsions on a centrifugal microfluidic platform or Lab-on-a-CD (LOCD). We show that the density and the viscosity of the fluids involved are important parameters for predicting the characteristics of the droplets generated with this method. Moreover, we broadened this concept by using the fluidic barriers to separate reactive chemicals. As a proof of concept, alginate and CaCl2 solutions are separated by an oil barrier to control the... 

    Probability of missed detection as a criterion for receiver placement in MIMO PCL

    , Article IEEE National Radar Conference - Proceedings, 7 May 2012 through 11 May 2012, Atlanta, GA ; 2012 , Pages 0924-0927 ; 10975659 (ISSN) ; 9781467306584 (ISBN) Majd, M. N ; Chitgarha, M. M ; Radmard, M ; Nayebi, M. M ; Sharif University of Technology
    IEEE  2012
    Abstract
    Using multiple antennas at the transmit and receive sides of a passive radar brings both the benefits of MIMO radar and passive radar. However one of the obstacles arisen in such configuration is the receive antennas placement in proper positions so that the radar performance is improved. Here we just consider the case of positioning one receiver among multiple illuminators of opportunity. Indeed it is a start for the solution of optimizing the geometry of the multiple receivers in a passive radar  

    An efficient method for the ring opening of epoxides with aromatic amines by Sb(III) chloride under microwave irradiation

    , Article Journal of Chemical Research ; Issue 4 , 2008 , Pages 220-221 ; 03082342 (ISSN) Ghazanfari, D ; Hashemi, M. M ; Mottaghi, M. M ; Foroughi, M. M ; Sharif University of Technology
    2008
    Abstract
    SbCl3 supported on montmorillonite K-10 is an efficient catalyst for the ring opening of epoxides with aromatic amines under solvent-free conditions and microwave irradiation to give the corresponding b-amino alcohols in high yields with high regioselectivity  

    MIMO radar signal design to improve the MIMO ambiguity function via maximizing its peak

    , Article Signal Processing ; Volume 118 , 2016 , Pages 139-152 ; 01651684 (ISSN) Chitgarha, M. M ; Radmard, M ; Nazari Majd, M ; Karbasi, S. M ; Nayebi, M. M ; Sharif University of Technology
    Elsevier  2016
    Abstract
    One of the important obstacles in MIMO (Multiple Input Multiple Output) radars is the issue of designing proper transmit signals. Indeed, the capability of signal design is a significant advantage in MIMO radars, through which, the system can achieve much better performance. Many different aspects of this performance improvement have been considered yet, and the transmit signals have been designed to attain such goal, e.g., getting higher SNR or better detector's performance at the receiver. However, an important tool for evaluating the radar's performance is its ambiguity function. In this paper, we consider the problem of transmit signal design, in order to optimize the ambiguity function... 

    Detection-localization tradeoff in MIMO radars

    , Article Radioengineering ; Volume 26, Issue 2 , 2017 , Pages 581-587 ; 12102512 (ISSN) Nazari Majd, M ; Radmard, M ; Chitgarha, M. M ; Bastani, M. H ; Nayebi, M. M ; Sharif University of Technology
    2017
    Abstract
    Two gains play key roles in recently developed MIMO wireless communication systems: "spatial diversity" gain and "spatial multiplexing" gain. The diversity gain refers to the capability to decrease the error rate of the MIMO channel, while the multiplexing gain implicitly refers to the amount of increase in the capacity of the MIMO channel. It has been shown that there is a fundamental tradeoff between these two types of gains, meaning interplay between increasing reliability (via an increase in the diversity gain) and increasing data rate (via an increase in the multiplexing gain). On the other hand, recently, MIMO radars have attracted much attention for their superior ability to enhance... 

    Antenna placement and power allocation optimization in MIMO detection

    , Article IEEE Transactions on Aerospace and Electronic Systems ; Vol. 50, Issue 2 , April , 2014 , pp. 1468-1478 Radmard, M ; Chitgarha, M. M ; Majd, M. N ; Nayebi, M. M ; Sharif University of Technology
    2014
    Abstract
    It is a well known fact that using multiple antennas at transmit and receive sides improves the detection performance. However, in such multiple-input multiple-output (MIMO) configuration, proper positioning of transmitters and receivers is a big challenge that can have significant influence on the performance of the overall system. In addition, determining the power of each transmitter under a total power constraint is a problem that should be solved in order to enhance the performance and coverage of such a system. In this paper, we design the Neyman-Pearson detector under the Rayleigh scatter model and use it to introduce a criterion for the antenna placement at both transmit and receive... 

    Ambiguity function of MIMO radar with widely separated antennas

    , Article Proceedings International Radar Symposium ; 16 -18 June , 2014 ; ISSN: 21555753 Radmard, M ; Chitgarha, M. M ; Nazari Majd, M ; Nayebi, M. M ; Sharif University of Technology
    2014
    Abstract
    There has been much interest, recently, towards exploiting the Multiple-Input Multiple-Output (MIMO) technique in radar. It is shown that using multiple antennas at transmit and receive sides can improve the performance of the system. However, in order to analyze the system's performance, its ambiguity function, i.e. the ambiguity function of a MIMO radar, is needed to be defined. In this paper, beginning from the information theoretic definitions, we derive such function, specifically for a MIMO radar with widely separated antennas  

    Choosing the position of the receiver in a MISO passive radar system

    , Article European Microwave Week 2012: "Space for Microwaves", EuMW 2012, Conference Proceedings - 9th European Radar Conference, EuRAD 2012 ; 2012 , Pages 318-321 ; 9782874870293 (ISBN) Chitgarha, M. M ; Majd, M. N ; Radmard, M ; Nayebi, M. M ; Sharif University of Technology
    2012
    Abstract
    By combining the two ideas of MIMO (Multiple Input Multiple Output) and PCL (Passive Coherent Location) in radar, one can achieve the advantages of both recently developed techniques simultaneously. While using multiple antennas at the receive side provides a spatial diversity of the object to be detected, using multiple illuminators of opportunity, most importantly, makes the radar covert to the interceptors. One obstacle in such MIMO configuration is choosing the positions of the receive antennas. In this paper, after analyzing the Neyman-Pearson detector for the DVB-T based PCL, we introduce the probability of missed detection as a criterion to place the receive antenna. Here, we only... 

    Adaptive filtering techniques in passive radar

    , Article Proceedings International Radar Symposium, Dresden ; Volume 2 , June , 2013 , Pages 1067-1078 ; 21555753 (ISSN) ; 9783954042234 (ISBN) Chitgarha, M. M ; Radmard, M ; Majd, M. N ; Nayebi, M. M ; Sharif University of Technology
    2013
    Abstract
    One of the most important obstacles in passive radar applications is removing the direct signal from the target channel. Otherwise, week echoes from the targets in the target channel would be ignored due to the limited dynamic range of the system. One of the most effective techniques in this field is using adaptive filters. In this paper various adaptive filters are introduced and their performances are shown and compared  

    Ambiguity function based receiver placement in multi-site radar

    , Article 2016 CIE International Conference on Radar, RADAR 2016, 10 October 2016 through 13 October 2016 ; 2017 ; 9781509048281 (ISBN) Radmard, M ; Chitgarha, M. M ; Nazari Majd, M ; Nayebi, M. M ; Sharif University of Technology
    2017
    Abstract
    It has been shown that using multiple antennas in a radar system improves the performance considerably, since multiple target echoes are received from different aspect angles of the target. In this way, the target detection is improved. However, when using multiple antennas, some problems, such as designing the transmit signals, synchronization, etc. emerge that should be solved. One of such problems is the receiver placement. Receiver placement deals with choosing a proper position for the receive antenna in order to optimize the whole system's performance. In this paper, a receiver placement procedure based on improving the radar ambiguity function is proposed for the case of a multisite... 

    Improving MIMO radar's performance through receivers' positioning

    , Article IET Signal Processing ; Volume 11, Issue 5 , 2017 , Pages 622-630 ; 17519675 (ISSN) Chitgarha, M. M ; Radmard, M ; Nazari Majd, M ; Nayebi, M. M ; Sharif University of Technology
    Institution of Engineering and Technology  2017
    Abstract
    By employing the MIMO (multiple-input-multiple-output) technology in radar, some new problems emerged, that, in order to benefit the MIMO gains in radar, it was necessary to solve them suitably. One of such obstacles is determining the positions of receive antennas in a MIMO radar system with widely separated antennas (WS MIMO radar), since it is shown that the antennas' positions affect the whole system's performance considerably. In this study, a proper receivers' positioning procedure is proposed. To do this end, four criteria are developed based on the proposed MIMO detector and the MIMO ambiguity function. The simulations verify that the proposed positioning procedure improves the... 

    Silylation of hydroxy groups with HMDS under microwave irradiation and solvent-free conditions

    , Article Phosphorus, Sulfur and Silicon and Related Elements ; Volume 177, Issue 2 , 2002 , Pages 289-292 ; 10426507 (ISSN) Mojtahedi, M. M ; Saidi, M. R ; Bolourtchian, M ; Heravi, M. M ; Sharif University of Technology
    2002
    Abstract
    Phenols and alcohols are silylated with hexamethyldisilazane (HMDS) under microwave irradiation in solvent-free condition in good to excellent yields  

    Dynamic analysis of carbon nanotubes under electrostatic actuation using modified couple stress theory

    , Article Acta Mechanica ; Vol. 225, Issue 6 , June , 2014 , pp. 1523-1535 ; Online ISSN: 1619-6937 Fakhrabadi, M. M. S ; Rastgoo, A ; Ahmadian, M. T ; Mashhadi, M. M ; Sharif University of Technology
    2014
    Abstract
    Modified couple stress theory is a size-dependent theorem capturing the micro/nanoscale effects influencing the mechanical behaviors of the micro- and nanostructures. In this paper, it is applied to investigate the nonlinear vibration of carbon nanotubes under step DC voltage. The vibration, natural frequencies and dynamic pull-in characteristics of the carbon nanotubes are studied in detail. Moreover, the effects of various boundary conditions and geometries are scrutinized on the dynamic characteristics. The results reveal that application of this theory leads to the higher values of the natural frequencies and dynamic pull-in voltages  

    White space regions

    , Article Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 22 January 2011 through 28 January 2011, Novy Smokovec ; Volume 6543 LNCS , 2011 , Pages 226-237 ; 03029743 (ISSN) ; 9783642183805 (ISBN) Ehsani, S ; Fazli, M ; Ghodsi, M ; Safari, M ; Saghafian, M ; Tavakkoli, M ; Sharif University of Technology
    2011
    Abstract
    We study a classical problem in communication and wireless networks called Finding White Space Regions. In this problem, we are given a set of antennas (points) some of which are noisy (black) and the rest are working fine (white). The goal is to find a set of convex hulls with maximum total area that cover all white points and exclude all black points. In other words, these convex hulls make it safe for white antennas to communicate with each other without any interference with black antennas. We study the problem on three different settings (based on overlapping between different convex hulls) and find hardness results and good approximation algorithms  

    Utilization of hybrid nanofluids in solar energy applications: A review

    , Article Nano-Structures and Nano-Objects ; Volume 20 , 2019 ; 2352507X (ISSN) Ahmadi, M. H ; Ghazvini, M ; Sadeghzadeh, M ; Alhuyi Nazari, M ; Ghalandari, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Hybrid nanofluids have several advantages compared with the conventional types due to their modified properties. Their enhanced thermophysical and rheological properties make them more appropriate for solar energy systems. In this review paper, an overview of solar energy systems is represented, and afterwards, applications of hybrid nanofluids in various solar technologies, especially solar thermal, are reviewed. Comparison between the nanofluidic systems, and the conventional ones is performed in order to gain a deeper insight into the advantages of using nanofluids. According to the results of the reviewed studies, the most important reason for performance enhancement of nanofluidic solar...