Loading...
Search for: mashayekhan--s
0.005 seconds
Total 38 records

    Fabrication of porous gelatin-chitosan microcarriers and modeling of process parameters via the RSM method

    , Article International Journal of Biological Macromolecules ; Volume 88 , 2016 , Pages 288-295 ; 01418130 (ISSN) Karimian, S. A. M ; Mashayekhan, S ; Baniasadi, H ; Sharif University of Technology
    Elsevier B.V 
    Abstract
    Porous gelatin-chitosan microcarriers (MCs) with the size of 350 ± 50 μm were fabricated with blends of different gelatin/chitosan (G/C) weight ratio using an electrospraying technique. Response surface methodology (RSM) was used to study the quantitative influence of process parameters, including blend ratio, voltage, and syringe pump flow rate, on MCs diameter and density. In the following, MCs of the same diameter and different G/C weight ratio (1, 2, and 3) were fabricated and their porosity and biocompatibility were investigated via SEM images and MTT assay, respectively. The results showed that mesenchymal stem cells (MSCs) could attach, proliferate, and spread on fabricated porous MCs... 

    Chitosan nanoparticles enhance the efficiency of methylene blue-mediated antimicrobial photodynamic inactivation of bacterial biofilms: An in vitro study

    , Article Photodiagnosis and Photodynamic Therapy ; Volume 14 , 2016 , Pages 211-217 ; 15721000 (ISSN) Darabpour, E ; Kashef, N ; Mashayekhan, S ; Sharif University of Technology
    Abstract
    Biodegradable chitosan nanoparticles (CSNPs) with an intrinsic antimicrobial activity may be a good choice to improve the effectiveness of antimicrobial photodynamic inactivation (APDI). The aim of this study was to investigate the effect of CSNPs on the efficiency of methylene blue (MB)-mediated APDI of Staphylococcus aureus and Pseudomonas aeruginosa biofilms. We also assessed the phototoxicity of MB + CSNPs towards human fibroblasts. Methods: CSNPs were prepared using ionic gelation method and characterized by dynamic light scattering (DLS) and field-emission scanning electron microscope (FESEM). Biofilms were developed in a 96-well polystyrene plate for 24 h. In vitro phototoxic effect... 

    Simulation of the effects of oxygen carriers and scaffold geometry on oxygen distribution and cell growth in a channeled scaffold for engineering myocardium

    , Article Mathematical Biosciences ; Volume 294 , 2017 , Pages 160-171 ; 00255564 (ISSN) Zehi Mofrad, A ; Mashayekhan, S ; Bastani, D ; Sharif University of Technology
    Abstract
    This study proposes a mathematical model to evaluate the impact of oxygen carriers and scaffold geometry on oxygen distribution and cell growth in a 3D cardiac construct using computational fluid dynamics (CFD). Flow equations, oxygen balance equation and cell balance equation were solved using special initial and boundary conditions. The modeling results revealed that 55% increase in cardiac cell density occurred by using 6.4% perfluorocarbon oxygen carrier (PFC) compared to pure culture medium without PFC supplementation. Moreover, the effects of the scaffold geometry on cell density were examined by changing the channel numbers and the construct length. A 30% increase in the average cells... 

    Fabrication of porous scaffolds with decellularized cartilage matrix for tissue engineering application

    , Article Biologicals ; Volume 48 , 2017 , Pages 39-46 ; 10451056 (ISSN) Nasiri, B ; Mashayekhan, S ; Sharif University of Technology
    Academic Press  2017
    Abstract
    Due to the avascular nature of articular cartilage, damaged tissue has little capacity for spontaneous healing. Three-dimensional scaffolds have potential for use in tissue engineering approach for cartilage repair. In this study, bovine cartilage tissue was decellularized and chemically crosslinked hybrid chitosan/extracellular matrix (ECM) scaffolds were fabricated with different ECM weight ratios by simple freeze drying method. Various properties of chitosan/ECM scaffolds such as microstructure, mechanical strength, swelling ratio, and biodegradability rate were investigated to confirm improved structural and biological characteristics of chitosan scaffolds in the presence of ECM. The... 

    Modeling and optimization of gelatin-chitosan micro-carriers preparation for soft tissue engineering: using response surface methodology

    , Article Materials Science and Engineering C ; Volume 75 , 2017 , Pages 545-553 ; 09284931 (ISSN) Radaei, P ; Mashayekhan, S ; Vakilian, S ; Sharif University of Technology
    Abstract
    Electrospray ionization is a wide spread technique for producing polymeric microcarriers (MCs) by applying electrostatic force and ionic cross-linker, simultaneously. In this study, fabrication process of gelatin-chitosan MCs and its optimization using the Response Surface Methodology (RSM) is reported. Gelatin/chitosan (G/C) blend ratio, applied voltage and feeding flow rate, their individual and interaction effects on the diameter and mechanical strength of the MCs were investigated. The obtained models for diameter and mechanical strength of MCs have a quadratic relationship with G/C blend ratio, applied voltage and feeding flow rate. Using the desirability curve, optimized G/C blend... 

    Design and fabrication of injectable microcarriers composed of acellular cartilage matrix and chitosan

    , Article Journal of Biomaterials Science, Polymer Edition ; Volume 29, Issue 6 , 2018 , Pages 683-700 ; 09205063 (ISSN) Sivandzade, F ; Mashayekhan, S ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Abstract
    Cartilage is an avascular tissue with limited self-repair ability. Since the methods for treatment of cartilage defects have not been effective, new therapies based on tissue engineering are considered over the recent years. In this study, human cartilage tissue was decellularized and porous injectable microcarriers (MCs) composed of acellular extracellular matrix (ECM) of cartilage tissue and chitosan (CS), with different ECM weight ratios, were fabricated by electrospraying technique to be used in the treatment of articular cartilage defects. Various properties of ECM/CS MCs such as microstructure, mechanical strength, water uptake behaviour, and biodegradability rate were investigated.... 

    Fabrication, modeling and optimization of lyophilized advanced platelet rich fibrin in combination with collagen-chitosan as a guided bone regeneration membrane

    , Article International Journal of Biological Macromolecules ; Volume 125 , 2019 , Pages 383-391 ; 01418130 (ISSN) Ansarizadeh, M ; Mashayekhan, S ; Saadatmand, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study, lyophilized advanced platelet rich fibrin (A-PRF) was used in combination with collagen-chitosan membrane for the first time to combine advantages of both collagen and A-PRF membranes. Response surface methodology (RSM) was used to design the experimental condition and to correlate the effects of parameters, including chitosan/collagen (chit/col) weight ratio and A-PRF concentration on Young's modulus, mesenchymal stem cell (MSCs) viability and degradation rate of the membranes. Results showed that Young's modulus of the membranes was intensified by increasing chit/col weight ratio and decreasing A-PRF concentration from 3 to 8 MPa. Cell viability of MSCs was improved by both... 

    A cellular cardiac matrix-based porous microcarrier as a cell delivery system in myocardial tissue engineering application

    , Article Iranian Polymer Journal (English Edition) ; Volume 31, Issue 9 , 2022 , Pages 1079-1091 ; 10261265 (ISSN) Ghanbari Asl, S ; Mashayekhan, S ; Khanmohammadi, M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Myocardial infarction (MI) causes a high mortality rate in the world every year. Myocardial tissue engineering using extracellular matrix-derived substrate and cytocompatible biopolymers is a promising approach for treating MI. Besides, injectable porous microspheres are developing engineer constructs to use as dual-purpose microcarriers for cell culture and injectable scaffolds in trivial invasiveness for tissue implantation. This study aimed to fabricate porous microcarriers composed of myocardial extracellular matrix and chitosan using an electrospraying technique. The effect of electrospraying parameters, including extracellular matrix/chitosan ratio and voltage, on MCs diameter was... 

    ZnO-incorporated polyvinylidene fluoride/poly(ε-caprolactone) nanocomposite scaffold with controlled release of dexamethasone for bone tissue engineering

    , Article Applied Physics A: Materials Science and Processing ; Volume 128, Issue 8 , 2022 ; 09478396 (ISSN) FotouhiArdakani, F ; Mohammadi, M ; Mashayekhan, S ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Here we report on the development of a hybrid nanofibrous scaffold made from polyvinylidene fluoride (PVDF) nanofibers embedding zinc oxide nanorods (ZnOns), and poly(ε-caprolactone) (PCL) nanofibers incorporating dexamethasone (DEX)-loaded chitosan nanoparticles using dual-electrospinning method. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and tensile analysis were carried out for physiochemical characterization of the scaffolds, followed by DEX release profile. In addition, an MTT assay was conducted to assess the viability of mouse bone marrow-derived mesenchymal stem cells (mBMSCs) on the hybrid nanofibrous scaffold.... 

    Emerging bioengineering strategies for regulating stem cell fate: Scaffold physical and biochemical cues

    , Article Tissue Engineering: Current Status and Challenges ; 2022 , Pages 125-156 ; 9780128240649 (ISBN) Sharareh Mahdavi, S ; Mashayekhan, S ; Sharif University of Technology
    Elsevier  2022
    Abstract
    Stem cell therapy has been introduced as an emerging approach for injured tissue regeneration. This chapter addresses developing regenerative medicine techniques for controlling stem cell behavior. Recent studies have been reviewed and novel approaches have been divided into four main categories: 3D bioprinting, lithography, microfluidics, and electrospinning. Moreover, the impact of applied biophysical and/or biochemical cues to the designed scaffold on controlling stem cell activity has been discussed. The potential of using stem cells for various soft and hard tissue regenerations has been explored in different bioengineered scaffolds and the applied techniques for controlling stem cell... 

    Fabrication and characterization of conductive chitosan/gelatin-based scaffolds for nerve tissue engineering

    , Article International Journal of Biological Macromolecules ; Volume 74 , 2015 , Pages 360-366 ; 01418130 (ISSN) Baniasadi, H ; Ramazani S. A., A ; Mashayekhan, S ; Sharif University of Technology
    Abstract
    This paper reports on the development of conductive porous scaffolds by incorporating conductive polyaniline/graphene (PAG) nanoparticles into a chitosan/gelatin matrix for its potential application in peripheral nerve regeneration. The effect of PAG content on the various properties of the scaffold is investigated and the results showed that the electrical conductivity and mechanical properties increased proportional to the increase in the PAG loading, while the porosity, swelling ratio and in vitro biodegradability decreased. In addition, the biocompatibility was evaluated by assessing the adhesion and proliferation of Schwann cells on the prepared scaffolds using SEM and MTT assay,... 

    Design, fabrication and characterization of oxidized alginate-gelatin hydrogels for muscle tissue engineering applications

    , Article Journal of Biomaterials Applications ; Volume 31, Issue 1 , 2016 , Pages 152-161 ; 08853282 (ISSN) Baniasadi, H ; Mashayekhan, S ; Fadaoddini, S ; Haghirsharifzamini, Y ; Sharif University of Technology
    SAGE Publications Ltd  2016
    Abstract
    In this study, we reported the preparation of self cross-linked oxidized alginate-gelatin hydrogels for muscle tissue engineering. The effect of oxidation degree (OD) and oxidized alginate/gelatin (OA/GEL) weight ratio were examined and the results showed that in the constant OA/GEL weight ratio, both cross-linking density and Young's modulus enhanced by increasing OD due to increment of aldehyde groups. Furthermore, the degradation rate was increased with increasing OD probably due to decrement in alginate molecular weight during oxidation reaction facilitated degradation of alginate chains. MTT cytotoxicity assays performed on Wharton's Jelly-derived umbilical cord mesenchymal stem cells... 

    Empirical modeling of mechanical properties of modified collagen/chitosan membrane by response surface methodology

    , Article 24th Iranian Conference on Biomedical Engineering and 2017 2nd International Iranian Conference on Biomedical Engineering, ICBME 2017, 30 November 2017 through 1 December 2017 ; 2018 ; 9781538636091 (ISBN) Ansarizadeh, M ; Mashayekhan, S ; Saadatmand, M ; Khashabi, E ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    In this study, collagen/chitosan membrane used for guided bone regeneration (GBR) was modified. Collagen and chitosan are routinely used in GBR membrane fabrication. In addition advanced platelet rich fibrin (A-PRF) is a promising substitution for fabricating membrane in dental surgery. Herein, acid soluble collagen from calf skin was extracted and characterized. The combination of A-PRF with collagen/chitosan membrane was investigated in this study. FTIR analysis revealed that chemical crosslinking using EDC/NHS was occurred. The morphology of collagen/chitosan membrane in a gradient manner of chitosan was assessed via SEM images. Response surface methodology (RSM) was used to... 

    The controlled release of dexamethasone sodium phosphate from bioactive electrospun PCL/gelatin nanofiber scaffold

    , Article Iranian Journal of Pharmaceutical Research ; Volume 18, Issue 1 , 2019 , Pages 111-124 ; 17350328 (ISSN) Boroojeni, F. R ; Mashayekhan, S ; Abbaszadeh, H. A ; Sharif University of Technology
    Iranian Journal of Pharmaceutical Research  2019
    Abstract
    In this study, a system of dexamethasone sodium phosphate (DEXP)-loaded chitosan nanoparticles embedded in poly-ε-caprolacton (PCL) and gelatin electrospun nanofiber scaffold was introduced with potential therapeutic application for treatment of the nervous system. Besides anti-inflammatory properties, DEXP act through its glucocorticoid receptors, which are involved in the inhibition of astrocyte proliferation and microglial activation. Bovine serum albumin (BSA) was used to improve the encapsulation efficiency of DEXP within chitosan nanoparticles and to overcome its initial burst release. BSA incorporation within the chitosan nanoparticles increased the encapsulation efficiency of DEXP... 

    Biohybrid oxidized alginate/myocardial extracellular matrix injectable hydrogels with improved electromechanical properties for cardiac tissue engineering

    , Article International Journal of Biological Macromolecules ; Volume 180 , 2021 , Pages 692-708 ; 01418130 (ISSN) Mousavi, A ; Mashayekhan, S ; Baheiraei, N ; Pourjavadi, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Injectable hydrogels which mimic the physicochemical and electromechanical properties of cardiac tissue is advantageous for cardiac tissue engineering. Here, a newly-developed in situ forming double-network hydrogel derived from biological macromolecules (oxidized alginate (OA) and myocardial extracellular matrix (ECM)) with improved mechanical properties and electrical conductivity was optimized. 3-(2-aminoethyl amino) propyltrimethoxysilane (APTMS)-functionalized reduced graphene oxide (Amine-rGO) was added to this system with varied concentrations to promote electromechanical properties of the hydrogel. Alginate was partially oxidized with an oxidation degree of 5% and the resulting OA... 

    Preparation of conductive polyaniline/graphene nanocomposites via in situ emulsion polymerization and product characterization

    , Article Synthetic Metals ; Vol. 196 , 2014 , pp. 199-205 Baniasadi, H ; Ramazani, S. A ; Mashayekhan, S ; Ghaderinezhad, F ; Sharif University of Technology
    Abstract
    This work, which is a part of our ongoing studies on developing conductive scaffolds for nerve tissue engineering, reports synthesis of highly conductive binary-doped polyaniline nanoparticles and polyaniline/graphene nanocomposites. The samples were synthesized through chemical oxidation of aniline via in situ emulsion polymerization method in presence of hydrochloric acid and sodium dodecyl sulfate. Graphene nanosheets were also prepared via modified Hummer's method followed by chemical reduction using hydrazine monohydrate. Electrical conductivity measurements using a standard four-point probe technique with FTIR and UV-vis studies revealed that conductive binary-doped emeraldine salt... 

    Structural stability and sustained release of protein from a multilayer nanofiber/nanoparticle composite

    , Article International Journal of Biological Macromolecules ; Volume 75 , April , 2015 , Pages 248-257 ; 01418130 (ISSN) Vakilian, S ; Mashayekhan, S ; Shabani, I ; Khorashadizadeh, M ; Fallah, A ; Soleimani, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    The cellular microenvironment can be engineered through the utilization of various nano-patterns and matrix-loaded bioactive molecules. In this study, a multilayer system of electrospun scaffold containing chitosan nanoparticles was introduced to overcome the common problems of instability and burst release of proteins from nanofibrous scaffolds. Bovine serum albumin (BSA)-loaded chitosan nanoparticles was fabricated based on ionic gelation interaction between chitosan and sodium tripolyphosphate. Suspension electrospinning was employed to fabricate poly-e{open}-caprolacton (PCL) containing protein-loaded chitosan nanoparticles with a core-shell structure. To obtain the desired scaffold... 

    Mathematical modeling of a slurry bubble column reactor for hydrodesulfurization of diesel fuel: Single- and two-bubble configurations

    , Article Chemical Engineering Research and Design ; Volume 100 , August , 2015 , Pages 362-376 ; 02638762 (ISSN) Khadem Hamedani, B ; Yaghmaei, S ; Fattahi, M ; Mashayekhan, S ; Hosseini Ardali, S. M ; Sharif University of Technology
    Institution of Chemical Engineers  2015
    Abstract
    In this investigation, a mathematical model for HDS of diesel fuel in a slurry bubble column reactor was developed. The model is based on the axial dispersion of the heterogeneous gas flow regime, which includes two various bubble classes: large (20±70mm) and small (1±10mm). By assuming only large or large plus small bubbles in the column, single- and two-bubble class mode equations are developed. The developed models to solving the mass and enthalpy balances from which the sulfur conversion was obtained that undertaken. The chemical kinetics over NiMoS/γ-Al2O3 catalyst were undertaken for the reaction rate of the involved reactions. The reactor operating conditions... 

    The synergistic effect of surface topography and sustained release of TGF-β1 on myogenic differentiation of human mesenchymal stem cells

    , Article Journal of Biomedical Materials Research - Part A ; Volume 104, Issue 7 , 2016 , Pages 1610-1621 ; 15493296 (ISSN) Moghadasi Boroujeni, S ; Mashayekhan, S ; Vakilian, S ; Ardeshirylajimi, A ; Soleimani, M ; Sharif University of Technology
    John Wiley and Sons Inc 
    Abstract
    A combination of topographical cues and controlled release of biochemical factors is a potential platform in controlling stem cells differentiation. In this study the synergistic effect of nanotopography and sustained release of biofunctional transforming growth factor beta 1 (TGF-β1) on differentiation of human Wharton's Jelly-derived mesenchymal stem cell (hWJ-derived UC-MSCs) toward myogenic lineage was investigated. In order to achieve a sustained release of TGF-β1, this factor was encapsulated within chitosan nanoparticles. Afterwards the aligned composite mats were fabricated using poly-E-caprolacton (PCL) containing TGF-β1-loaded chitosan nanoparticles and poly-L-lactic acid (PLLA).... 

    Design and fabrication of conductive nanofibrous scaffolds for neural tissue engineering: Process modeling via response surface methodology

    , Article Journal of biomaterials applications ; Volume 33, Issue 5 , 2018 , Pages 619-629 ; 15308022 (ISSN) Soleimani, M ; Mashayekhan, S ; Baniasadi, H ; Ramazani, A ; Ansarizadeh, M ; Sharif University of Technology
    NLM (Medline)  2018
    Abstract
    Peripheral nervous system in contrary to central one has the potential for regeneration, but its regrowth requires proper environmental conditions and supporting growth factors. The aim of this study is to design and fabricate a conductive polyaniline/graphene nanoparticles incorporated gelatin nanofibrous scaffolds suitable for peripheral nervous system regeneration. The scaffolds were fabricated with electrospinning and the fabrication process was designed with Design-Expert software via response surface methodology. The effect of process parameters including applied voltage (kV), syringe pump flow rate (cm3/h), and PAG concentration (wt%), on the scaffold conductivity, nanofibers diameter,...