Search for: mehrafrooz--b
0.005 seconds

    Nanomechanics of actin filament: a molecular dynamics simulation

    , Article Cytoskeleton ; Volume 75, Issue 3 , March , 2018 , Pages 118-130 ; 19493584 (ISSN) Shamloo, A ; Mehrafrooz, B ; Sharif University of Technology
    John Wiley and Sons Inc  2018
    Actin is known as the most abundant essentially protein in eukaryotic cells. Actin plays a crucial role in many cellular processes involving mechanical forces such as cell motility, adhesion, muscle contraction, and intracellular transport. However, little is known about the mechanical properties of this protein when subjected to mechanical forces in cellular processes. In this article, a series of large-scale molecular dynamics simulations are carried out to elucidate nanomechanical behavior such as elastic and viscoelastic properties of a single actin filament. Here, we used two individual methods namely, all-atoms and coarse-grained molecular dynamics, to evaluate elastic properties of a... 

    Protein corona impact on nanoparticle-cell interactions: Toward an energy-based model of endocytosis

    , Article Journal of Physics Condensed Matter ; Volume 32, Issue 11 , 2020 Shadmani, P ; Mehrafrooz, B ; Montazeri, A ; Naghdabadi, R ; Sharif University of Technology
    Institute of Physics Publishing  2020
    Upon incubation of nanoparticles in biological fluids, a new layer called the protein corona is formed on their surface affecting the interactions between nanoparticles and targeted cells during the endocytosis process. In the present study, a mathematical model based on the diffusion of membrane mobile receptors is proposed. Opposing the endocytosis proceeding, membrane bending and tension energies are named as resistant energy. Also, the binding energy and free-energy associated with the configurational entropy are collectively termed promoter energy. Utilizing this model, endocytosis of gold nanoparticle (GNP) is simulated to explore the biological media effect. The results reveal that...