Loading...
Search for: mofid--m
0.007 seconds
Total 103 records

    On the hysteretic behavior of trapezoidally corrugated steel shear walls

    , Article Structural Design of Tall and Special Buildings ; Vol. 23, Issue. 2 , 10 February , 2014 , pp. 94-104 ; ISSN: 15417794 Emami, F ; Mofid, M ; Sharif University of Technology
    Abstract
    At present, corrugated plates have numerous applications such as web of plate girders and aerospace applications. Higher out-of-plane stiffness and initial elastic strength of the corrugated plates compared with flat plates are reasons for consideration. This study investigates the behavior of trapezoidally corrugated steel plate shear walls (TCSPSWs) under monotonic and cyclic loadings. Finite element analyses that include both material and geometric nonlinearities are employed for the examination. The results from finite element analysis are verified through tested specimen findings. Moreover, the behavior of the steel shear walls with the flat infill panels and the corrugated plate infill... 

    Dynamic green function for response of timoshenko beam with arbitrary boundary conditions

    , Article Mechanics Based Design of Structures and Machines ; Volume 42, Issue 1 , 2 January , 2014 , Pages 97-110 ; ISSN: 15397734 Ghannadiasl, A ; Mofid, M ; Sharif University of Technology
    Abstract
    This paper presents the dynamic response of uniform Timoshenko beams with arbitrary boundary conditions using Dynamic Green Function. An exact and direct modeling technique is stated to model beam structures with arbitrary boundary conditions subjected to the external load that is an arbitrary function of time t and coordinate x and the concentrated moving load. This technique is based on the Dynamic Green Function. The effect of different boundary conditions, load, and other parameters is assessed. Finally, some numerical examples are shown to illustrate the efficiency and simplicity of the new formulation based on the Dynamic Green Function  

    Effects of using low yield point steel in steel plate shear walls

    , Article IES Journal Part A: Civil and Structural Engineering ; Vol. 7, Issue. 1 , 2014 , pp. 51-56 Jebelli, H ; Mofid, M ; Sharif University of Technology
    Abstract
    Steel plate shear walls are lateral load resisting systems, especially against earthquake excitation. They are constructed with or without stiffeners. Stiffened walls are more ductile than those without stiffeners. In this research a numerical study using finite element analysis via a finite element program is conducted. Nine thin steel plate shear wall models were considered in three groups of 5-storey, 10-storey and 15-storey walls. In each group different yield point steel for the infill plate was used. The yield points of infill plates were assumed to be 160, 200 and 240 MPa. The results showed that using low yield point (LYP) steel will increase energy dissipation of models by up to... 

    Prediction of the yielding moment of flush endplate splice connections using finite element modeling

    , Article Scientia Iranica ; Volume 20, Issue 2 , 2013 , Pages 270-277 ; 10263098 (ISSN) Mohamadi Shooreh, M. R ; Mofid, M ; Sharif University of Technology
    2013
    Abstract
    This paper presents the results of parametric analyses of the yielding moment (My) of Bolted Flush Endplate Beam (BFEB) splice connections using Finite Element Modeling (FEM) tools. The connection components were modeled using three-dimensional brick elements, while contact between the endplates was modeled using Coulomb friction. Materials for beam, endplate and bolts were considered to behave non-linearly. Finite element results with three experimental and numerical studies were compared, and all indicated good agreement, which is also briefly reviewed in this paper. Using verified FEM, fairly large parametric studies, based on the practical configuration of BFEB connections, were carried... 

    Experimental study on cyclic behavior of trapezoidally corrugated steel shear walls

    , Article Engineering Structures ; Volume 48 , March , 2013 , Pages 750-762 ; 01410296 (ISSN) Emami, F ; Mofid, M ; Vafai, A ; Sharif University of Technology
    2013
    Abstract
    This paper presents the research works on the cyclic behavior of trapezoidally corrugated as well as unstiffened steel shear walls. A series of experimental studies were carried out on the half-scale, one-story, single-bay steel shear walls with unstiffened and trapezoidally corrugated panels. This experimental study was conducted to compare the stiffness, strength, ductility ratio and energy dissipation capacity of three different steel shear walls: unstiffened, trapezoidally vertical corrugated and trapezoidally horizontal corrugated. Gravity loads were not applied at the top of the walls and horizontal load was applied at the top of each specimen. Loading sequence was applied as... 

    On the characteristics and design of yielding elements used in steel-braced framed structures

    , Article Structural Design of Tall and Special Buildings ; Volume 22, Issue 2 , 2013 , Pages 179-191 ; 15417794 (ISSN) Tajammolian, H ; Mofid, M ; Sharif University of Technology
    2013
    Abstract
    In this paper, the behavior of a concentric braced frame structure equipped with yielding elements (YE), based on energy concepts, has been investigated extensively. When a severe earthquake occurs, energy will get absorbed through structural elements, which causes destruction. In order to reduce structural damage, input energy should be dissipated. YE will act as a fuse and absorb a great deal of earthquake input energy. Two one-story steel frames with different bay-to-height ratios (B/H < 1 and B/H > 1) are investigated. YE is located in the braces intersection. First, through studying the elastic behavior of the frame, the best location, angle and shape of YE is proposed. Subsequently, a... 

    On the quantification of seismic performance factors of Chevron Knee Bracings, in steel structures

    , Article Engineering Structures ; Volume 46 , 2013 , Pages 155-164 ; 01410296 (ISSN) Farahi, M ; Mofid, M ; Sharif University of Technology
    Abstract
    As a matter of fact, it is necessary to have the values of Response Modification Factor R, Over-strength Factor Ω0, and Deflection Amplification Factor Cd in order to design seismic-force-resisting systems according to design and loading codes. This study is intended to evaluate these factors for a structural lateral bracing system called Chevron Knee Bracing (CKB). In this type of bracing, the knee elements assist the system to dissipate energy through the formation of plastic flexural and/or shear hinges within the presented bracing system. The approach utilized in this study is according to FEMA P695 based on low probability of structural collapse and involves nonlinear static and dynamic... 

    On the characteristics and seismic study of Hat Knee Bracing system, in steel structures

    , Article Steel and Composite Structures ; Volume 13, Issue 1 , 2012 , Pages 1-13 ; 12299367 (ISSN) Jafar Ramaji, I ; Mofid, M ; Sharif University of Technology
    2012
    Abstract
    In this study, a new structural bracing system named 'Hat Knee Bracing' (HKB) is presented. In this structural system, a special form of diagonal braces, which is connected to the knee elements instead of beam-column joints, is investigated. The diagonal elements provide lateral stiffness during moderate earthquakes. However the knee elements, which is a fuse-like component, is designed to have one plastic joint in the knee elements for dissipation of the energy caused by strong earthquake. First, a suitable shape for brace and knee elements is proposed through elastic studying of the system and several practical parameters are established. Afterward, by developing applicable and highly... 

    Cyclic test of steel plate shear wall designed by PFI method

    , Article Advanced Materials Research ; Volume 378-379 , 2012 , Pages 785-788 ; 10226680 (ISSN) ; 9783037852880 (ISBN) Emami, F ; Mofid, M ; Sharif University of Technology
    2012
    Abstract
    In this paper, Plate Frame Interaction (PFI) developed by other researches for modeling Steel Plate Shear Wall (SPSW) is applied for designing a half-scale, single bay and one story SPSW. After designing of SPSW, one specimen is constructed accordingly. In order to determine the mechanical properties of steel, coupon test is performed; and then again theoretical relations based on PFI is re-checked. In this study, gravity loads are neglected and only seismic resistance of SPSW is considered. With cyclic lateral loading as quasi-static load, according to Acceptance Criteria for Cyclic Racking Shear Tests For Metal-Sheathed Shear Walls with Steel Framing (AC154) and obtaining its hysteretic... 

    New modeling for moment-rotation behavior of bolted endplate connections

    , Article Scientia Iranica ; Volume 18, Issue 4 A , August , 2011 , Pages 827-834 ; 10263098 (ISSN) Mohamadi Shoore, M. R ; Mofid, M ; Sharif University of Technology
    2011
    Abstract
    A new exponential model to depict the moment-rotation (M-θ) relationship of Bolted Endplate Connections (BEC) is proposed. The proposed model represents an approach to the prediction of M-O curves, taking into account the possible failure modes and the deformation characteristics of the connection elements. The presented model has three physical parameters, along with two curve-fitted factors. These physical parameters are generated from dimensional details of the connection, as well as the material properties. By employing simplified connection behavioral models to estimate the connection M-θ behavior, analytical expressions for evaluating major connection parameters, such as initial... 

    Exact solution to free vibration of beams partially supported by an elastic foundation

    , Article Scientia Iranica ; Volume 18, Issue 4 A , 2011 , Pages 861-866 ; 10263098 (ISSN) Motaghian, S. E ; Mofid, M ; Alanjari, P ; Sharif University of Technology
    Abstract
    This study pertains to the free vibration problem of beams on an elastic foundation of the Winkler type, which is distributed over a particular length of the beam. Closed form solutions are developed by solving the governing differential equations of beams. Moreover, an innovative mathematical approach is proposed to find the precise analytical solution of the free vibration of beams with mixed boundary conditions. Results are discussed in detail through verification studies. Ultimately, it was concluded that the proposed mathematical method could successfully obtain the exact solution to the free vibration problem of beams on partial elastic foundations under mixed boundary conditions  

    Improving construction management of an educational center by applying Earned Value technique

    , Article Procedia Engineering ; Volume 14 , 2011 , Pages 1945-1952 ; 18777058 (ISSN) Naderpour, A ; Mofid, M ; Sharif University of Technology
    2011
    Abstract
    Earned value project management is a well-known management system that integrates cost, schedule and technical performance. It allows the calculation of cost and schedule variances and performance indices and forecasts the project cost and schedule duration. The Earned Value concept was conceived by industrial engineers working in American factories over a century ago. This concept improved by the time and in July 1998, the Earned Value Management System became the American National Standards Institute (ANSI/EIA) Standard #748. By concise reports derived from using Earned Value Method (EVM) in the project, the manager is able to have exact information about the project details and also can... 

    On the modal incremental dynamic analysis of reinforced concrete structures, using a trilinear idealization model

    , Article Engineering Structures ; Volume 33, Issue 4 , 2011 , Pages 1117-1122 ; 01410296 (ISSN) Zarfam, P ; Mofid, M ; Sharif University of Technology
    Abstract
    In order to estimate the seismic demands at the performance level, the inelastic behavior of concrete structures should be considered. Incremental dynamic analysis (IDA) based on a nonlinear response time history analysis (NL-RHA) is considered to be the most accurate method in seismic demand calculations. However, modal incremental dynamic analysis (MIDA), based on the equivalent single-degree-of-freedom (SDF) oscillator, is also often used in studying structural engineering performances. As the MIDA method has usually not been applied to reinforced concrete (RC) structures, in this study an attempt is made to investigate the performances of RC frames and to compare the results obtained... 

    On the equivalent simple models of braced steel shear panels

    , Article Proceedings of the Institution of Civil Engineers: Structures and Buildings ; Volume 168, Issue 8 , August , 2015 , Pages 570-577 ; 09650911 (ISSN) Hamed, A. A ; Mofid, M ; Sharif University of Technology
    Thomas Telford Services Ltd  2015
    Abstract
    Through the combination of two types of seismic resisting systems including braced frames and steel shear walls, braced steel shear panel systems can be formed. This new lateral load-resisting system solves some of the defects of current special steel shear walls, such as imposing significant loads on boundary elements along with gravity load effects. Analysis and design of this new structural system underline the importance of having simple and precise finite-element models. To this aim, this paper presents two types of equivalent braced frames termed ‘overall equivalent brace’ and ‘equivalent mid-brace’. The equations of brace area, material strength and strain-hardening ratio are obtained... 

    Dynamic response of a non-uniform Timoshenko beam, subjected to moving mass

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 229, Issue 14 , October , 2015 , Pages 2499-2513 ; 09544062 (ISSN) Roshandel, D ; Mofid, M ; Ghannadiasl, A ; Sharif University of Technology
    SAGE Publications Ltd  2015
    Abstract
    In this article, the dynamic response of a non-uniform Timoshenko beam acted upon by a moving mass is extensively investigated. To this end, the eigenfunction expansion method is adapted to the problem, employing the natural mode shapes of a uniform Timoshenko beam. Moreover, the orthonormal polynomial series expansion method is successfully applied to the coupled set of governing differential equations pertaining to the dynamic behavior of non-uniform Timoshenko beam actuated by a moving mass. Some numerical examples are solved in which the excellent agreement of the two presented methods is illustrated  

    Modal analysis of the dynamic response of Timoshenko beam under moving mass

    , Article Scientia Iranica ; Volume 22, Issue 2 , 2015 , Pages 331-344 ; 10263098 (ISSN) Roshandel, D ; Mofid, M ; Ghannadiasl, A ; Sharif University of Technology
    Sharif University of Technology  2015
    Abstract
    In this study, the dynamic response of a Timoshenko beam under moving mass is investigated. To this end, vectorial form orthogonality property of the Timoshenko beam free vibration modes is applied to the EEM (Eigenfunction Expansion Method). The implication of the vectorial form series and an appropriate inner product of mode shapes in combination are focused for a beam with arbitrary boundary conditions. Consequently, significant simplifications and efficacy in the utilization of the EEM in eliminating the spatial domain is achieved. In order to comprise validation, the present study is compared with the DET (Discrete Element Technique) and the RKPM (Reproducing Kernel Particle Method)  

    On the plastic analysis of concentrically braced frames with shear panel, obtaining predetermined collapse mechanism

    , Article Structural Design of Tall and Special Buildings ; Volume 24, Issue 5 , 2015 , Pages 366-395 ; 15417794 (ISSN) Akbari Hamed, A ; Mofid, M ; Sharif University of Technology
    Abstract
    Summary Conventional design methods do not ensure that the desired collapse mechanism is developed at target displacement. In this paper, a case study is presented to analyze concentrically braced frames with steel shear panel (CBFSP). Also, extensive investigation in the failure modes are made, to have the global yielding mode at the final state. For this purpose, each of one-story, three-story, six-story and nine-story CBFSP models were decomposed into three parts where the members' closed-form equations of internal forces were identified and superimposed. On the basis of the kinematic theorem of plastic collapse, the possible mechanisms and the related energy equations were defined to... 

    On the experimental and numerical study of braced steel shear panels

    , Article Structural Design of Tall and Special Buildings ; Volume 24, Issue 14 , 2015 , Pages 853-872 ; 15417794 (ISSN) Akbari Hamed, A ; Mofid, M ; Sharif University of Technology
    Abstract
    Steel shear panels in combination with bracing are a novel form of steel shear walls that eliminate large distributed loads to impose on primary beams along with columns. This paper presents the results of a comparative experimental program on two types of steel shear panels with and without stiffeners. For this purpose, the proposed quasi-static cyclic loading history of Federal Emergency Management Agency(FEMA) 461 was applied on two full-scale specimens. Structural steel was selected as the material of the panels, which were welded to the surrounding boundary elements. In addition, using finite element models, performed tests were simulated and scaling effects were investigated. This... 

    An analytical solution for free vibration of elastically restrained timoshenko beam on an arbitrary variable winkler foundation and under axial load

    , Article Latin American Journal of Solids and Structures ; Volume 12, Issue 13 , 2015 , Pages 2417-2438 ; 16797817 (ISSN) Ghannadiasl, A ; Mofid, M ; Sharif University of Technology
    Abstract
    Natural frequencies are important dynamic characteristics of a structure where they are required for the forced vibration analysis and solution of resonant response. Therefore, the exact solution to free vibration of elastically restrained Timoshenko beam on an arbitrary variable elastic foundation using Green Function is presented in this paper. An accurate and direct modeling technique is introduced for modeling uniform Timoshenko beam with arbitrary boundary conditions. The applied method is based on the Green Function. Thus, the effect of the translational along with rotational support flexibilities, as well as, the elastic coefficient of Winkler foundation and other parameters are... 

    On the seismic performance of Hat Knee Bracing system in low-rise multistory steel structures

    , Article Advances in Structural Engineering ; Volume 18, Issue 3 , 2015 , Pages 325-338 ; 13694332 (ISSN) Foulad, R ; Mofid, M ; Zarrin, M ; Sharif University of Technology
    Multi-Science Publishing Co. Ltd  2015
    Abstract
    In this paper, the behavior and performance of a new type of bracing system called Hat Knee Bracing (HKB) is investigated in low-rise multistory steel structures. This novel form of resistant system, which provides reasonable stiffness in moderate earthquakes, consists of a V shaped knee member connected to mid span of the beam and the brace members. In this research work, the "FEMA P695 evaluation method" is utilized in order to explore the nonlinear behavior of the HKB frame, and quantification of three seismic performance factors: Response Modification Factor, Over-strength Factor, and Deflection Amplification Factor. The seismic response simulation of archetype frames is performed using...