Loading...
Search for: noshad--m
0.004 seconds

    Higher-order four-wave mixing modeling in DWDM networks

    , Article Physica Scripta, Belgrade ; Volume T157 , 15 November , 2013 ; 02811847 (ISSN) Yazdani, A ; Noshad, M ; Sharif University of Technology
    2013
    Abstract
    In this paper, we derive a theoretical model for the higher-order four-wave mixing (FWM) power in wavelength division multiplexing networks with non-zero dispersion shifted fibers for the first time. We have investigated the higher-order FWM power theoretically and by numerical simulations. Dividing the fiber into a finite number of elements and applying the boundary conditions allow us to derive an expression for the second-order power penalty. At the end of each element, we derive the first-order FWM power for all wavelengths and use these values to calculate the second-order FWM power in the next element. Consequently, for each channel we can compute the total second-order FWM power... 

    Theoretical modeling and simulation of higher order FWM crosstalks in multichannel WDM optical communication systems

    , Article Advanced Materials Research, Xiamen ; Volume 660 , 2013 , Pages 130-134 ; 10226680 (ISSN) ; 9783037856413 (ISBN) Yazdani, A ; Noshad, M ; Farrokhi, A ; Sharif University of Technology
    2013
    Abstract
    In this paper, we derive a theoretical model for the higher order FWM power in WDM networks with NZDSF fibers for the first time. We have investigated the higher order FWM power theoretically and by numerical simulations. Dividing the fiber into finite number of elements and applying the boundary conditions, allow us derive an expression for second order power penalty. At the end of each element we derive the first order FWM power for all wavelengths and use these values to calculate the second order FWM power in the next element. Consequently, for each channel we can compute the total second order FWM power penalty at the end of the fiber  

    proposal for tunable dual channel transmitter and mechano-optical switch based on photonic crystal

    , Article Applied Optics ; Volume 51, Issue 32 , 2012 , Pages 7784-7787 ; 00036935 (ISSN) Vahabzadeh, Y ; Noshad, M ; Sharif University of Technology
    OSA - The Optical Society  2012
    Abstract
    In this article we propose a novel mechano-optical switch and dual channel transmitter based on photonic crystal. The device consists of two waveguides and an elliptical cavity in a square lattice structure. Two optical signals at separate wavelengths are inserted in the input waveguide. The elliptical cavity can be rotated using a mechanical force, which results in the control of transmission efficiency at each of the wavelengths. In addition, rotation of the cavity can be considered as a switching action, which changes on-off states of the output signals  

    Low-complexity stochastic Generalized Belief Propagation

    , Article 2016 IEEE International Symposium on Information Theory, ISIT 2016, 10 July 2016 through 15 July 2016 ; Volume 2016-August , 2016 , Pages 785-789 ; 21578095 (ISSN) ; 9781509018062 (ISBN) Haddadpour, F ; Jafari Siavoshani, M ; Noshad, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc 
    Abstract
    The generalized belief propagation (GBP), introduced by Yedidia et al., is an extension of the belief propagation (BP) algorithm, which is widely used in different problems involved in calculating exact or approximate marginals of probability distributions. In many problems, it has been observed that the accuracy of GBP outperforms that of BP considerably. However, due to its generally higher complexity compared to BP, its application is limited in practice. In this paper, we introduce a stochastic version of GBP called stochastic generalized belief propagation (SGBP) that can be considered as an extension to the stochastic BP (SBP) algorithm introduced by Noorshams et al. They have shown... 

    Performance analysis of AND gates based on four-wave-mixing for application in optical-code division multiple access systems

    , Article IET Optoelectronics ; Volume 6, Issue 1 , 2012 , Pages 13-25 ; 17518768 (ISSN) Noshad, M ; Noshad, M ; AlaviRad, S. M ; Sallent, S ; Sharif University of Technology
    Abstract
    In this paper, we study the performance of all optical AND gates based on the four-wave-mixing (FWM) process, for application in the receivers of the spectral phase encoded optical code division multiple access (SPE-OCDMA) systems. For the performance analysis, the spectral domain auto-correlation function of the multiple access interference signal at the output of the optical AND gate is derived and then mean and variance of the photo-detector current are calculated. For solving the Fourier transform of FWM non-linear Schrodinger equations, spectral domain Volterra series are used and the solution of these coupled equations is approximated with the first three terms of the Volterra...