Loading...
Search for: nouri--ali
0.005 seconds

    Using of Exhaust Gas from Gas Turbine for Conservation of Energy Consumption

    , M.Sc. Thesis Sharif University of Technology Ghanbari, Mahdi (Author) ; Nouri, Ali (Supervisor)
    Abstract
    Nowadays, the use of gas turbines with low capacity have acceptance in large quantity. This type of gas turbines with a capacity of approximately 5-200kW are known as microturbines. This type of turbines due to the existence of limitations on increasing of turbine inlet temperature and compressor pressure ratio has low efficiency compared to the turbine with high capacity. Therefore the use of a recuperator in the cycle is necessary. Optimum design of heat recuperator has important effect on improving of gas turbine cycle efficiency. In this project for optimum design of heat recuperator, the effect of recuperator on gas turbine cycle efficiency is studied. By determining geometric... 

    Stability of Stratified Two-Phase Flow by Chebyshev Collocation Method

    , M.Sc. Thesis Sharif University of Technology Sajadian, Ahmad (Author) ; Nouri, Ali (Supervisor)
    Abstract
    In this thesis fluid flow stability will be studied using Chebychev collocation spectral method. In general instability occurs between layers of a single fluid or at the interface of two different fluids. In case of an unstable flow small imposed perturbations on the flow will grow with time and their amplitudes will grow larger. Instability in most cases is an unfavorable phenomenon and therefore should be avoided.Two-phase flow processes in horizontal or vertical pipes under various conditions like natural or forced convection are of considerable importance in industrial applications. Two-phase flow can be found in many devices and industries like boilers, nuclear reactors, cooling and... 

    Experimental Study on Two-Phase Flow Characteristics in Micro-Channels

    , M.Sc. Thesis Sharif University of Technology Yavari, Hadi (Author) ; Nouri, Ali (Supervisor)
    Abstract
    The present study provids an experimental investigation on two-pase flow characteristics in microchannels. Experiment were conducted with a mixture of air and water in horizontal circular pyrex channel with 400µm inner diameter. The pressure drop and flow rates of the liquid and gas were measured using new method and images of the flow patterns recorded by high shutter speed camera. The gas and liquid superficial velocity ranges were 0.025-12.5m/s and 0.016-3.6m/s, respectively. The flow pattern map is developed from the observed flow patterns based on phases superficial velocity as wel as We numbers of liquid and gas phases. The flow pattern map is compared with those of larger channels.... 

    Simulation of Natural Convection Inside an Enclosure with Several Heated Bodies

    , M.Sc. Thesis Sharif University of Technology Sepahi, Farzan (Author) ; Nouri, Ali (Supervisor)
    Abstract
    in this study, turbulent natural convection inside an air filled square cavity with several hot and cold internal bodies in the range of Rayleigh numbers between 1010 and 1012 has been investigated numerically. Vertical walls of the enclosure have been considered isothermal and horizontal walls are insulated in all cases. An appropriate arrangement of internal bodies in which the minimum heat transfer occurs is desired. For this purpose, two dimensional Reynolds-averaged Navier-Stokes equations have been solved with the finite volume discretization method in a staggered grid. In addition, two equation high-Reynolds-number model with standard wall functions is used to simulate the... 

    Performance of Partially Filled Mini-Channels with Porous Media

    , M.Sc. Thesis Sharif University of Technology Azimi, Adel (Author) ; Nouri, Ali (Supervisor) ; Moosavi, Ali (Co-Advisor)
    Abstract
    Laminar forced convection flow through a channel partially filled with a porous material was numerically studied in this thesis. The Navier-Stokes and Brinkman-Forchheimer equations were used to model the fluid flow in the free and porous regions, respectively. Coupling of the pressure and velocity fields was resolved using the SIMPLEC algorithm. The local thermal equilibrium was adopted in the energy equation. The effects of the thermal conductivity ratio, Darcy number, porosity, Reynolds number and height of the porous insert on velocity and temperature field were investigated. The results show that the flow behavior and its associated heat transfer are susceptible to the variation of the...