Loading...
Search for: ordikhani--f
0.027 seconds

    Template-based growth of titanium dioxide nanorods by a particulate sol-electrophoretic deposition process

    , Article Particuology ; Volume 9, Issue 2 , 2011 , Pages 161-169 ; 16742001 (ISSN) Mohammadi, M. R ; Ordikhani, F ; Fray, D. J ; Khomamizadeh, F ; Sharif University of Technology
    Abstract
    TiO2 nanorods have been successfully grown into a track-etched polycarbonate (PC) membrane by a particulate sol-electrophoretic deposition from an aqueous medium. The prepared sols had a narrow particle size distribution around 17 nm and excellent stability against aging, with zeta potentials in the range of 47-50 mV at pH 2. It was found that TiO2 nanorods were grown from dilute aqueous sol with a low, 0.1-M concentration. Fourier transform infrared spectroscopy (FT-IR) analysis confirmed that a full conversion of titanium isopropoxide was obtained by hydrolysis, resulting in the formation of TiO2 particles. X-ray diffraction (XRD) results revealed that TiO2 nanorods dried at 100 °C were a... 

    Nanomedicine applications in orthopedic medicine: State of the art

    , Article International Journal of Nanomedicine ; Volume 10 , 2015 , Pages 6039-6054 ; 11769114 (ISSN) Mazaheri, M ; Eslahi, N ; Ordikhani, F ; Tamjid, E ; Simchi, A ; Sharif University of Technology
    Dove Medical Press Ltd  2015
    Abstract
    The technological and clinical need for orthopedic replacement materials has led to significant advances in the field of nanomedicine, which embraces the breadth of nanotechnology from pharmacological agents and surface modification through to regulation and toxicology. A variety of nanostructures with unique chemical, physical, and biological properties have been engineered to improve the functionality and reliability of implantable medical devices. However, mimicking living bone tissue is still a challenge. The scope of this review is to highlight the most recent accomplishments and trends in designing nanomaterials and their applications in orthopedics with an outline on future directions... 

    Enhancing sonocatalytic properties of TiO2 nanocatalysts by controlling the surface conditions: effect of particle size and PVA modification

    , Article Desalination and Water Treatment ; Volume 57, Issue 58 , 2016 , Pages 28378-28385 ; 19443994 (ISSN) Soleimani, F ; Madaah Hosseini, H. R ; Ordikhani, F ; Mokhtari Dizaji, M ; Sharif University of Technology
    Taylor and Francis Inc  2016
    Abstract
    The influence of particle size and surface modification on sonocatalytic activity of TiO2 nanoparticles was investigated by measuring the degradation efficiency of methyl orange (MO) as a model pollutant. Crystalline TiO2 nanoparticles with different particles and aggregate size were prepared through solution-phase method with varying synthesis temperatures. Coating with polyvinyl alcohol was performed to enhance colloidal stability of the particles over a wide range of pH values (1.5–7.5). Characterization was carried out using X-ray diffraction, high-resolution transmission electron microscopy, dynamic light scattering, and Fourier-transformed infrared techniques. It was found that... 

    Anti-IL-6 eluting immunomodulatory biomaterials prolong skin allograft survival

    , Article Scientific Reports ; Volume 9, Issue 1 , 2019 ; 20452322 (ISSN) Uehara, M ; Li, X ; Sheikhi, A ; Zandi, N ; Walker, B ; Saleh, B ; Banouni, N ; Jiang, L ; Ordikhani, F ; Dai, L ; Yonar, M ; Vohra, I ; Kasinath, V ; Orgill, D. P ; Khademhosseini, A ; Annabi, N ; Abdi, R ; Sharif University of Technology
    Nature Publishing Group  2019
    Abstract
    A primary goal in the management of burn wounds is early wound closure. The use of skin allografts represents a lifesaving strategy for severe burn patients, but their ultimate rejection limits their potential efficacy and utility. IL-6 is a major pleiotropic cytokine which critically links innate and adaptive immune responses. Here, we devised anti-IL-6 receptor eluting gelatin methacryloyl (GelMA) biomaterials (GelMA/anti-IL-6), which were implanted at the interface between the wound beds and skin allografts. Our visible light crosslinked GelMA/anti-IL-6 immunomodulatory biomaterial (IMB) demonstrated a stable kinetic release profile of anti-IL-6. In addition, the incorporation of...