Loading...
Search for: pedram--m--z
0.006 seconds

    Parameter estimation and interval type-2 fuzzy sliding mode control of a z-axis MEMS gyroscope

    , Article ISA Transactions ; Vol. 52, Issue 6 , 2013 , pp. 900-911 Fazlyab, M ; Pedram, M. Z ; Salarieh, H ; Alasty, A ; Sharif University of Technology
    Abstract
    This paper reports a hybrid intelligent controller for application in single axis MEMS vibratory gyroscopes. First, unknown parameters of a micro gyroscope including unknown time varying angular velocity are estimated online via normalized continuous time least mean squares algorithm. Then, an additional interval type-2 fuzzy sliding mode control is incorporated in order to match the resonant frequencies and to compensate for undesired mechanical couplings. The main advantage of this control strategy is its robustness to parameters uncertainty, external disturbance and measurement noise. Consistent estimation of parameters is guaranteed and stability of the closed-loop system is proved via... 

    Parameter estimation and interval type-2 fuzzy sliding mode control of a z-axis MEMS gyroscope

    , Article ISA Transactions ; Volume 52, Issue 6 , 2013 , Pages 900-911 ; 00190578 (ISSN) Fazlyab, M ; Pedram, M. Z ; Salarieh, H ; Alasty, A ; Sharif University of Technology
    2013
    Abstract
    This paper reports a hybrid intelligent controller for application in single axis MEMS vibratory gyroscopes. First, unknown parameters of a micro gyroscope including unknown time varying angular velocity are estimated online via normalized continuous time least mean squares algorithm. Then, an additional interval type-2 fuzzy sliding mode control is incorporated in order to match the resonant frequencies and to compensate for undesired mechanical couplings. The main advantage of this control strategy is its robustness to parameters uncertainty, external disturbance and measurement noise. Consistent estimation of parameters is guaranteed and stability of the closed-loop system is proved via... 

    Computing the blood brain barrier (BBB) diffusion coefficient: A molecular dynamics approach

    , Article Journal of Magnetism and Magnetic Materials ; Volume 410 , 2016 , Pages 187-197 ; 03048853 (ISSN) Shamloo, A ; Pedram, M. Z ; Heidari, H ; Alasty, A ; Sharif University of Technology
    Elsevier  2016
    Abstract
    Various physical and biological aspects of the Blood Brain Barrier (BBB) structure still remain unfolded. Therefore, among the several mechanisms of drug delivery, only a few have succeeded in breaching this barrier, one of which is the use of Magnetic Nanoparticles (MNPs). However, a quantitative characterization of the BBB permeability is desirable to find an optimal magnetic force-field. In the present study, a molecular model of the BBB is introduced that precisely represents the interactions between MNPs and the membranes of Endothelial Cells (ECs) that form the BBB. Steered Molecular Dynamics (SMD) simulations of the BBB crossing phenomenon have been carried out. Mathematical modeling...