Loading...
Search for: peyghami--s
0.005 seconds

    Enhanced frequency droop method for decentralized power sharing control in DC microgrids

    , Article IEEE Journal of Emerging and Selected Topics in Power Electronics ; Volume 9, Issue 2 , 2021 , Pages 1290-1301 ; 21686777 (ISSN) Jafari, M ; Peyghami, S ; Mokhtari, H ; Blaabjerg, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    This article proposes two novel approaches to improve the superimposed frequency droop scheme for the control of dc microgrids (MGs). Conventional voltage-based control strategies suffer from issues such as undesirable voltage regulations, poor power sharing among the sources, and negative effects of line resistances on the equivalent droop characteristics. To overcome these challenges, a superimposed frequency droop scheme has been introduced. However, this method suffers from three major issues: 1) instability in terms of load variation, which is due to the location of system dominant poles; 2) limitation in system loading due to the limitation in the transferred reactive power; and 3)... 

    Modeling in-and-out-of-water impact on all-electric ship power system considering propeller submergence in waves

    , Article 2021 IEEE Transportation Electrification Conference and Expo, ITEC 2021, 21 June 2021 through 25 June 2021 ; 2021 , Pages 533-538 ; 9781728175836 (ISBN) Nasiri, S ; Peyghami, S ; Parniani, M ; Blaabjerg, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    Despite the advantages of employing an electric propulsion system in All-Electric Ships (AES), additional power fluctuation sources have emerged in the ship power system as a result. Since the propellers are the primary power consumers in the AES, these fluctuations may significantly affect its power system power quality. Thus, for optimal performance of the ship power system, these fluctuations need to be rigorously investigated at the design level of vessels. Waves collision is one of the critical conditions where propellers inject power fluctuations into the ship power system. Therefore, a comprehensive model is essential to analyze the propellers in-and-out-of-water effect on the ship... 

    An open-water efficiency based speed change strategy with propeller lifespan enhancement in all-electric ships

    , Article IEEE Access ; Volume 9 , 2021 , Pages 22595-22604 ; 21693536 (ISSN) Nasiri, S ; Peyghami, S ; Parniani, M ; Blaabjerg, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    In recent years, utilizing the electrical propulsion system in the marine industry has become widely popular. Control of the propeller has been a high-priority design challenge in this industry. One of the essential issues in propeller control is the speed control of the ships. A suitable control strategy for the propeller should be economically-efficient while ensuring stability, reliability, and power quality of the ship's power system. This article proposes an improved propeller control strategy for increasing/decreasing the ship's speed. This scheme consists of two strategies: a maximum acceleration strategy and an efficient operation strategy. The maximum acceleration strategy aims to... 

    Characterization of proportional-integral-resonant compensator for DC link voltage control

    , Article 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics, COMPEL 2018, 25 June 2018 through 28 June 2018 ; 2018 ; 9781538655412 (ISBN) Zarei, S. F ; Ghasemi, M. A ; Peyghami, S ; Davari, P ; Mokhtari, H ; Blaabjerg, F ; Sharif University of Technology
    Abstract
    Voltage unbalance and short circuits in distribution networks adversely affect the performance of grid-tied voltage source inverters (VSIs). Consequently, the dc-link voltage ripple may significantly increase leading to operation of VSI in an unsatisfactory manner. Conventionally in order to maintain the negative sequence current under unbalanced conditions, low-pass/trap filter in the current control loop are required which significantly reduce the controller bandwidth. In order to minimize the dc-link voltage ripple without impairing the controller bandwidth, this paper investigates the design and performance of Proportional-Integral-Resonant (PIR) controller in improving the performance... 

    DC-link loop bandwidth selection strategy for grid-connected inverters considering power quality requirements

    , Article International Journal of Electrical Power and Energy Systems ; Volume 119 , 2020 Zarei, S. F ; Mokhtari, H ; Ghasemi, M. A ; Peyghami, S ; Davari, P ; Blaabjerg, F ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    DC-link voltage and output current control loops are two cascaded loops in the control structure of grid-connected inverters. A high DC-link voltage loop bandwidth (DCL-BW) provides more disturbance rejection capability for the control loop and is preferred from control system perspective. However, for stability issues, this BW is limited and must be sufficiently less than that of the current control loop. Among the different control schemes, instantaneous active reactive control (IARC) method provides the highest possible DCL-BW (i.e., 0.02 × switching frequency). Having this degree of freedom in the controller design, a proper methodology should be defined for selection of DCL-BW. In this... 

    Control of grid-following inverters under unbalanced grid conditions

    , Article IEEE Transactions on Energy Conversion ; Volume 35, Issue 1 , 2020 , Pages 184-192 Zarei, S. F ; Mokhtari, H ; Ghasemi, M. A ; Peyghami, S ; Davari, P ; Blaabjerg, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    This paper proposes a new control scheme to eliminate the 3rd harmonic in the output currents of grid-following inverters under unbalanced grid conditions. Unbalanced grids adversely affect the performance of grid-following inverters due to the oscillations appearing on the DC-link voltage with a frequency twice the line frequency. The paper is based on instantaneous active reactive control (IARC) technique due to its advantages over other existing methods. However, the presence of severe asymmetrical 3rd harmonic distortions in the inverter output currents is the main challenge with IARC method, which impairs the power quality requirements. This paper enhances the IARC scheme by proposing a...