Loading...
Search for: pourahmadi--f
0.005 seconds

    Robust linear model for multi-period AC optimal power flow

    , Article IET Generation, Transmission and Distribution ; Volume 14, Issue 13 , 2020 , Pages 2535-2548 Heidarabadi, H ; Pourahmadi, F ; Hossieni, S. H ; Sharif University of Technology
    Institution of Engineering and Technology  2020
    Abstract
    In the near future power systems, efficient management of uncertainties with considering the system constraints without any simplification will be a challenge for system operators. Considering AC constraints leads to providing more accurate schedule of generating units, which can have a significant impact on the reduction of operating costs. Although numerous studies have been done to convexify AC optimal power flow constraints, most of the models are non-linear, which can be intractable for large-scale systems. In this study, a novel linear robust AC model is introduced using a combination of the quadratic convex relaxation (QCR) and the Frank-Wolfe algorithm for linearising the AC... 

    Risk-Based networked-constrained unit commitment considering correlated power system uncertainties

    , Article IEEE Transactions on Smart Grid ; Volume 11, Issue 2 , 2020 , Pages 1781-1791 Ghorani, R ; Pourahmadi, F ; Moeini Aghtaie, M ; Fotuhi Firuzabad, M ; Shahidehpour, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    The forecast errors for distributed energy resources (DERs) and hourly demands have contributed to power system uncertainties and additional risks in the day-ahead scheduling of electricity markets. In this paper, a risk-based approach is introduced to determine the stochastic solution of network-constrained unit commitment (NCUC) when additional uncertainties are embedded in the power system scheduling. The historical power market transaction data are used to model nodal injection uncertainties and reserve capacity requirements are considered to assess the solution of the risk-based NCUC. The proposed NCUC problem is formulated as a single-stage second order cone program which is a convex...