Loading...
Search for: reihani--s--n
0.006 seconds

    Axial potential mapping of optical tweezers for biopolymer stretching: The bead size matters

    , Article Optics Letters ; Volume 38, Issue 5 , 2013 , Pages 685-687 ; 01469592 (ISSN) Ahmadi, A ; Reihani, S. N. S ; Sharif University of Technology
    2013
    Abstract
    Optical tweezers (OT) are widely used for pico (and femto)-Newton range force measurements. The appropriate choice of the bead size is not well understood for biopolymer stretching applications of OT. We have shown, both by theory and experiment, that wrong choice of the bead size could cause errors as large as 295% in the measured force. We provide a simple map for correct choice of the bead size and the direction of pulling for such applications. There is a good agreement between our theoretical and experimental results  

    Axial position detection for optical tweezers based on Moiré Deflectometry

    , Article Optics Communications ; Volume 446 , 2019 , Pages 33-38 ; 00304018 (ISSN) Khorshad, A. A ; S. Reihani, S. N ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Optical tweezers are indispensable instruments for applying and measuring Pico-Newton range forces. The magnitude of the exerted force is determined by measuring the displacement of the trapped bead from the center of the trap. Recently, we developed a new detection system for optical tweezers based on Moiré Deflectometry (MD). In this work, we show, both theoretically and experimentally, that the introduced method can be used for detection in the axial direction, as well, with a significantly larger sensitivity compared to the commonly used QPD method. As an example, for a 2.17μm polystyrene bead this method could provide a sensitivity 285% larger than that of the QPD method. © 2019... 

    Enhancement of axial force of optical tweezers by utilizing a circular stop at the back focal plane of the objective

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 35, Issue 11 , 2018 , Pages 2654-2660 ; 07403224 (ISSN) Gorjizadeh Alinezhad, H ; Meydanloo, S ; Reihani, S. N ; Sharif University of Technology
    OSA - The Optical Society  2018
    Abstract
    Optical tweezers are indispensable force spectroscopes. The trap stiffness and the linear force range of the instrument determine the working force range of the instrument. Here we show both theoretically and experimentallythat utilizing a circular obstruction at the back focal plane of the objective can significantly increase the maximumlinear force. For instance, utilizing a disk with an obstruction ratio of 0.773 could increase the maximum linearforce by a factor of ∼39 when a 3.4 μm polystyrene bead is trapped. We also show that this simple beam shapingmethod can significantly improve the maximum applicable force per unit power of the laser entering the objectivelens. © 2018 Optical... 

    Optical concentration of gold nanoparticles as a new concept of analytical sensitivity

    , Article Instrumentation Science and Technology ; 2020 Vaziri Heshi, S ; Shokoufi, N ; Seyed Reihani, S. N ; Sharif University of Technology
    Bellwether Publishing, Ltd  2020
    Abstract
    Concentration procedures have always been implemented when trace analysis of compounds in real matrices is contemplated. A variety of concentration strategies have been reported aiming at decreasing the limits of detection (LODs). The optical concentration of the substance in solution is one of the novel concepts for the enhancement of the analytical sensitivity. In this study, the optical concentration has been measured by the trapping of gold nanoparticles ((Formula presented.) nm) dispersed in water at low-concentrations at the focal volume of the laser beam. The influence of factors such as the time of gold nanoparticle trapping, the size of the nanoparticles, the intensity of the laser... 

    Tube length-assisted optimized aerosol trapping

    , Article Optics Communications ; Vol. 329, issue , 2014 , pp. 196-199 ; ISSN: 00304018 Taheri, S. M. R ; Sadeghi, M ; Madadi, E ; S. Reihani, S. N ; Sharif University of Technology
    Abstract
    Trapping a single aerosol using optical tweezers could be of great importance for environmental sciences. Though a single nanoparticle as small as 10 nm is successfully trapped in aqueous media using optical tweezers, due to spherical aberration only large clusters of nanoparticles were stably trapped in air. In this paper we provide our theoretical and experimental results on optimized trapping of aerosols as small as 400 nm in radius by the introduction of an extra spherical aberration source in order to minimize the total spherical aberration of the system. Our method allows for trapping of high refractive index particles such as polystyrene beads in air. It also provides considerably... 

    Fluorescent quantification of size and lamellarity of membrane nanotubes

    , Article European Biophysics Journal ; Vol. 43, Issue. 12 , 2014 , pp. 595-602 ; ISSN: 1432-1017 Baroji,Y. F ; Oddershede, L. B ; Reihani, S. N. S ; Bendix, P. M ; Sharif University of Technology
    Abstract
    Membrane nanotubes, ubiquitous in cellular systems, adopt a spectrum of curvatures and shapes that are dictated by their intrinsic physical characteristics as well as their interactions with the local cellular environment. A high bending flexibility is needed in the crowded cytoplasm where tubes often need to bend significantly in the axial direction at sub-micron length scales. We find the stiffness of spontaneously formed membrane nanotubes by measuring the persistence length of reconstituted membrane nanotubes freely suspended in solution and imaged by fluorescence microscopy. By quantifying the tube diameter we demonstrate for the first time that the persistence length scales linearly... 

    Crosstalk elimination in the detection of dual-beam optical tweezers by spatial filtering

    , Article Review of Scientific Instruments ; Volume 85, Issue 5 , May , 2014 ; ISSN: 00346748 Ott, D ; Reihani, S. N. S ; Oddershede, L. B ; Sharif University of Technology
    Abstract
    In dual-beam optical tweezers, the accuracy of position and force measurements is often compromised by crosstalk between the two detected signals, this crosstalk leading to systematic and significant errors on the measured forces and distances. This is true both for dual-beam optical traps where the splitting of the two traps is done by polarization optics and for dual optical traps constructed by other methods, e.g., holographic tweezers. If the two traps are orthogonally polarized, most often crosstalk is minimized by inserting polarization optics in front of the detector; however, this method is not perfect because of the de-polarization of the trapping beam introduced by the required... 

    Efficient elimination of cross-talk in dual-beam optical tweezers by spatial filtering

    , Article Optical Molecular Probes, Imaging and Drug Delivery, OMP 2013, Waikoloa Beach, HI ; 14-18 April , 2013 ; 9781557529664 (ISBN) Ott, D ; Reihani, S. N. S ; Oddershede, L. B ; Sharif University of Technology
    2013
    Abstract
    In dual-beam optical traps, the precision of position/force measurements is often compromised by crosstalk, i.e. imperfect separation of the two signals. We devise a simple yet very efficient method to perform crosstalk eliminating spatial filtering  

    Optimized three-dimensional trapping of aerosols: The effect of immersion medium

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 32, Issue 7 , 2015 , Pages 1494-1498 ; 07403224 (ISSN) Taheri, S. M. R ; Madadi, E ; Sadeghi, M ; Reihani, S. N. S ; Sharif University of Technology
    OSA - The Optical Society  2015
    Abstract
    Optical tweezers have proven to be indispensable micromanipulation tools especially in aqueous solutions. Because of the significantly larger spherical aberration induced by the refractive index mismatch, trapping aerosols has always been cumbersome if not impossible. We introduce a simple but very efficient method for optimized aerosol trapping at a desired depth. We show that a wise selection of the immersion medium and the mechanical tube length not only enables trapping of objects that are known to be untrappable but also provides a way to tune the trappable depth range  

    Evaluating the toxic effect of an antimicrobial agent on single bacterial cells with optical tweezers

    , Article Biomedical Optics Express ; Volume 6, Issue 1 , 2015 , Pages 112-117 ; 21567085 (ISSN) Samadi, A ; Zhang, C ; Chen, J ; Reihani, S. N. S ; Chen, Z ; Sharif University of Technology
    OSA - The Optical Society  2015
    Abstract
    We implement an optical tweezers technique to assess the effects of chemical agents on single bacterial cells. As a proof of principle, the viability of a trapped Escherichia coli bacterium is determined by monitoring its flagellar motility in the presence of varying concentrations of ethyl alcohol. We show that the “killing time” of the bacterium can be effectively identified from the correlation statistics of the positional time series recorded from the trap, while direct quantification from the time series or associated power spectra is intractable. Our results, which minimize the lethal effects of bacterial photodamage, are consistent with previous reports of ethanol toxicity that used... 

    Backscattering-based detection scheme for dark-field optical tweezers

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 36, Issue 6 , 2019 , Pages 1587-1593 ; 07403224 (ISSN) Samadi, A ; Mousavi, S. M ; Hajizadeh, F ; Reihani, S. N. S ; Sharif University of Technology
    OSA - The Optical Society  2019
    Abstract
    Laser nanomanipulation by metallic nanoparticles, which are smaller than the diffraction limit, has become a great interest, especially in the manipulation of unstained biological samples. However, they are hard to image in bright-field microscopy, because of the diffraction limit. Thus, incorporation of a dark-field microscopy technique with optical tweezers would be an inevitable choice, enforcing the use of the backward scattering detection scheme. Here in this paper, we have taken into account the reflected light from the coverslip along with backscattered light from the trapped particle to validate and reveal some precautions of using this detection scheme, based on Mie-Debye... 

    Optimal in-depth trapping by tuning the correction collar of a dry objective lens

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 39, Issue 12 , 2022 , Pages 3209-3215 ; 07403224 (ISSN) Gorjizadeh Alinezhad, H ; Mahdavi, S. M ; Reihani, S. N. S ; Sharif University of Technology
    Optica Publishing Group (formerly OSA)  2022
    Abstract
    Optical tweezers are proven and indispensable micro-manipulation tools. It is very common to use an immersion-assisted high NA objective for optical trapping of micrometer-sized beads. However, such objectives suffer from low working depth range. Here we show, both by theory and experiment, that a dry objective can be utilized for optimal trapping of even sub-micrometer objects. For the first time, to the best of our knowledge, we were able to stably trap polystyrene beads with radii of 270 and 175 nm in 3D using an objective with numerical aperture of 0.9. © 2022 Optica Publishing Group  

    Nanoscale phase behavior on flat and curved membranes

    , Article Nanotechnology ; Vol. 25, issue. 50 , Dec , 2014 Andersen, T ; Bahadori, A ; Ott, D ; Kyrsting, A ; Reihani, S. N. S ; Bendix, P. M ; Sharif University of Technology
    Abstract
    The diverse physical properties of membranes play a critical role in many membrane associated biological processes. Proteins responsible for membrane transport can be affected by the lateral membrane order and lateral segregation of proteins is often controlled by the preference of certain membrane anchors for membrane phases having a physically ordered state. The dynamic properties of coexisting membrane phases are often studied by investigating their thermal behavior. Optical trapping of gold nanoparticles is a useful tool to generate local phase transitions in membranes. The high local temperatures surrounding an irradiated gold nanoparticle can be used to melt a part of a giant... 

    Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells

    , Article Physical Biology ; Volume 10, Issue 4 , 2013 ; 14783967 (ISSN) Mas, J ; Richardson, A. C ; Reihani, S. N. S ; Oddershede, L. B ; Berg Sorensen, K ; Sharif University of Technology
    2013
    Abstract
    With the success of in vitro single-molecule force measurements obtained in recent years, the next step is to perform quantitative force measurements inside a living cell. Optical traps have proven excellent tools for manipulation, also in vivo, where they can be essentially non-invasive under correct wavelength and exposure conditions. It is a pre-requisite for in vivo quantitative force measurements that a precise and reliable force calibration of the tweezers is performed. There are well-established calibration protocols in purely viscous environments; however, as the cellular cytoplasm is viscoelastic, it would be incorrect to use a calibration procedure relying on a viscous environment.... 

    Dynamics of membrane nanotubes coated with I-BAR

    , Article Scientific Reports ; Volume 6 , 2016 ; 20452322 (ISSN) Barooji, Y. F ; Rørvig Lund, A ; Semsey, S ; Seyed Reihani, S. N ; Bendix, P. M ; Sharif University of Technology
    Nature Publishing Group  2016
    Abstract
    Membrane deformation is a necessary step in a number of cellular processes such as filopodia and invadopodia formation and has been shown to involve membrane shaping proteins containing membrane binding domains from the IRSp53-MIM protein family. In reconstituted membranes the membrane shaping domains can efficiently deform negatively charged membranes into tubules without any other proteins present. Here, we show that the IM domain (also called I-BAR domain) from the protein ABBA, forms semi-flexible nanotubes protruding into Giant Unilamellar lipid Vesicles (GUVs). By simultaneous quantification of tube intensity and tubular shape we find both the diameter and stiffness of the nanotubes.... 

    Stochastic analysis of time series for the spatial positions of particles trapped in optical tweezers

    , Article Scientific Reports ; Volume 7, Issue 1 , 2017 ; 20452322 (ISSN) Mousavi, S. M ; Seyed Reihani, S. N ; Anvari, G ; Anvari, M ; Alinezhad, H. G ; Rahimi Tabar, R. M ; Sharif University of Technology
    Abstract
    We propose a nonlinear method for the analysis of the time series for the spatial position of a bead trapped in optical tweezers, which enables us to reconstruct its dynamical equation of motion. The main advantage of the method is that all the functions and parameters of the dynamics are determined directly (non-parametrically) from the measured series. It also allows us to determine, for the first time to our knowledge, the spatial-dependence of the diffusion coefficient of a bead in an optical trap, and to demonstrate that it is not in general constant. This is in contrast with the main assumption of the popularly-used power spectrum calibration method. The proposed method is validated...