Loading...
Search for: rezayat--s
0.009 seconds

    Nanofibrous hydrogel with stable electrical conductivity for biological applications

    , Article Polymer (United Kingdom) ; Volume 97 , 2016 , Pages 205-216 ; 00323861 (ISSN) Hosseinzadeh, S ; Rezayat, S. M ; Vashegani Farahani, E ; Mahmoudifard, M ; Zamanlui, S ; Soleimani, M ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    3D hydrogel environment with both unique properties of nanofibrous structure and electrical character can provide a promising scaffold for skeletal muscle tissue engineering approaches. Herein, the poly acrylic acid (PAA)-based hydrogel was engineered to conductive one by aniline polymerization in the form of nanofibers. The poly aniline (PANi) nanofibers were made by the optimized chemical reactions between the surface carboxylate groups of based hydrogel and protonated aniline monomers. We found that the strong bonding which was created between PANi and camphor sulphonic acid (CSA) as a doping agent supporting the stable electrical property of composite hydrogel after incubation in cell... 

    Chemotherapeutic effects of Apigenin in breast cancer: Preclinical evidence and molecular mechanisms; enhanced bioavailability by nanoparticles

    , Article Biotechnology Reports ; Volume 34 , 2022 ; 2215017X (ISSN) Adel, M ; Zahmatkeshan, M ; Akbarzadeh, A ; Rabiee, N ; Ahmadi, S ; Keyhanvar, P ; Rezayat, S. M ; Seifalian, A. M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    This review highlights using nanotechnology in increasing the bioavailability of AP (Apigenin) to enhance its therapeutic efficacy in breast cancer treatment. Breast cancer is one of the most leading causes of cancer death in women both in developed and developing countries. According to several epidemiological and clinical trial studies that indicate progestin-stimulated breast cancer in post-menopausal women; it is necessary to determine compounds to suppress or attenuate the tumor-promoting effects of progestins in breast cells. For this purpose, using the natural anti-progestins, including AP compared with the chemical ones could be significantly effective due to the lack of toxicities... 

    Cell-imprinted substrates act as an artificial niche for skin regeneration

    , Article ACS Applied Materials and Interfaces ; Vol. 6, Issue. 15 , 2014 , Pages 13280-13292 ; ISSN: 19448244 Mashinchian, O ; Bonakdar, S ; Taghinejad, H ; Satarifard, V ; Heidari, M ; Majidi, M ; Sharifi, S ; Peirovi, A ; Saffar, S ; Taghinejad, M ; Abdolahad, M ; Mohajerzadeh, S ; Shokrgozar, M. A ; Rezayat, S. M ; Ejtehadi M. R ; Dalby, M. J ; Mahmoudi, M ; Sharif University of Technology
    Abstract
    Bioinspired materials can mimic the stem cell environment and modulate stem cell differentiation and proliferation. In this study, biomimetic micro/nanoenvironments were fabricated by cell-imprinted substrates based on mature human keratinocyte morphological templates. The data obtained from atomic force microscopy and field emission scanning electron microscopy revealed that the keratinocyte-cell-imprinted poly(dimethylsiloxane) casting procedure could imitate the surface morphology of the plasma membrane, ranging from the nanoscale to the macroscale, which may provide the required topographical cell fingerprints to induce differentiation. Gene expression levels of the genes analyzed...