Loading...
Search for: rostami--b
0.005 seconds

    Experimental investigation of matrix wettability effects on water imbibition in fractured artificial porous media

    , Article Journal of Petroleum Science and Engineering ; Volume 86-87 , 2012 , Pages 165-171 ; 09204105 (ISSN) Rezaveisi, M ; Ayatollahi, S ; Rostami, B ; Sharif University of Technology
    Abstract
    Spontaneous water imbibition into the matrix blocks is known as the main mechanism for increased oil recovery from naturally fractured oil reservoirs. The rate of oil recovery and its ultimate value is mostly affected by wettability of the rocks and their pore structure. Oil viscosity also greatly influences the rate of oil recovery. A novel experimental model was utilized to study the imbibition mechanism under different wettability conditions. Matrix blocks made from different grain types and size distributions of glass beads were saturated with two different types of synthetic oil, to mimic the oil-saturated matrixes. The wetting characteristic of the models used in this study were... 

    Polymer-Enhanced low-salinity brine to control in situ mixing and salt dispersion in low-salinity waterflooding

    , Article Energy and Fuels ; Volume 35, Issue 13 , 2021 , Pages 10540-10550 ; 08870624 (ISSN) Darvish Sarvestani, A ; Rostami, B ; Mahani, H ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Although viability of low-salinity waterflooding (LSWF) at the laboratory scale has been proven, there are some challenges associated with its field application, which sheds uncertainties on its economic success. One of the challenges is the minimum required volume of low-salinity water, which should be injected to the reservoir due to the salt dispersion in porous media. Once the low-saline brine is injected into the reservoir, mixing of injected (low-salinity) and resident (high-salinity) brines occurs and the developed mixing zone grows continuously as the front moves from the injection well toward the production well. Increase in the salinity of the front reduces the efficiency of LSWF.... 

    Impact of injection parameters on mixing control by polymer-enhanced low-salinity waterflooding

    , Article Energy and Fuels ; Volume 36, Issue 19 , 2022 , Pages 11808-11816 ; 08870624 (ISSN) Darvish Sarvestani, A ; Rostami, B ; Mahani, H ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    In situ mixing by dispersive transport of salt and viscous fingering between the injected low-salinity (LS) brine and high-salinity (HS) formation brine can jeopardize the performance of low-salinity waterflooding (LSWF). In our previous papers, we demonstrated that in situ mixing can be suppressed by polymer-enhanced low-salinity waterflooding (PELS), in which a small amount of a viscosifying agent, such as a polymer, is added to the LS stream. Nevertheless, effective mixing control with PELS depends upon several factors and operational conditions, which have not yet been addressed. Therefore, this research focuses on the investigation of the impact of injection parameters, such as the... 

    Modeling of wormhole propagation in carbonate rocks by use of in-situ-gelled acids

    , Article SPE Journal ; Volume 22, Issue 6 , 2017 , Pages 2032-2048 ; 1086055X (ISSN) Hosseinzadeh, B ; Bazargan, M ; Rostami, B ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    Diversion in heterogeneous carbonate reservoirs plays the most important role to the success of acidizing. Without the use of diversion, more acid preferentially flows into the high-permeability region and leaves the low-permeability region underreacted. But a clear understanding of diverting agents, such as polymer-based in-situ-gelled acids, can help uniformly stimulate the near-wellbore region. In this paper, we correct the rheological model that was developed by Ratnakar et al. (2013) according to experimental data from Gomaa and Nasr-El-Din (2010b) by considering shear-rate effect in a two-scale continuum model. It is found that the rheology parameters and shear rate are influential... 

    Experimental investigation of tertiary oil gravity drainage in fractured porous media

    , Article Special Topics and Reviews in Porous Media ; Volume 1, Issue 2 , 2010 , Pages 179-191 ; 21514798 (ISSN) Rezaveisi, M ; Rostami, B ; Kharrat, R ; Ayatollahi, Sh ; Ghotbi, C ; Sharif University of Technology
    2010
    Abstract
    The amount of residual oil trapped in the matrix of a fractured reservoir after water drive, either natural water drive or water injection, depends on the wettability of the matrix rocks. Gas oil gravity drainage (GOGD) has been proposed as the tertiary oil recovery process for this type of oil reservoir. The current work focuses on experimental investigation of tertiary GOGD in fractured porous media under different types of matrix wettability. Results of a set of experiments performed in artificial porous media composed of sand packs and glass beads of different wettability have been used to check the GOGD rate and the ultimate oil recovery for previously waterflooded models. A novel... 

    Low salinity water injectionat different reservoir rocks: Similarities and differences

    , Article Special Topics and Reviews in Porous Media ; Volume 7, Issue 1 , 2016 , Pages 87-97 ; 21514798 (ISSN) Hassani, K ; Rostami, B ; Ayatollahi, S ; Yassin, M. R ; Sharif University of Technology
    Begell House Inc  2016
    Abstract
    A literature review of laboratory and field scale studies on low salinity water (LSW) injection showed that the salinity and composition of injected water can have a significant impact on oil recovery. Historically, extensive research has been completed to understand the mechanisms and factors affecting LSW injection. However, although numerous mechanisms have been proposed to describe the interactions in the target process, none have been widely accepted. In this study, waterflooding tests were used to investigate the advantages, disadvantages, and effect of LSW injection. In laboratory tests, two different brines and crude oil of one of Iran's southern reservoirs were used to assess the... 

    Water film rupture in blocked oil recovery by gas injection: experimental and modeling study

    , Article Chemical Engineering Science ; Volume 161 , 2017 , Pages 288-298 ; 00092509 (ISSN) Mirazimi, S ; Rostami, B ; Ghazanfari, M. H ; Khosravi, M ; Sharif University of Technology
    Abstract
    Water shielding phenomenon generally occurs after waterflooding in water-wet rocks, and impedes direct contact between the oil and the injected gas in tertiary gas injection processes. In this work, a set of visualization experiments were performed on micromodel patterns including designed dead-end pores with a film of water on the surface of pore bodies, which is a more realistic representation of porous media. The experiments were conducted at different miscibility conditions, and the required time for water to be displaced from the throat by the swelling of oil was measured for first contact miscible (n-C5/CO2) and immiscible (n-C10/CO2) systems. In the next step, a model was proposed to... 

    Experimental and modelling study of gravity drainage in a three-block system

    , Article Transport in Porous Media ; 2020 Erfani, H ; Karimi Malekabadi, A ; Ghazanfari, M. H ; Rostami, B ; Sharif University of Technology
    Springer Science and Business Media B.V  2020
    Abstract
    Gravity drainage is known as the controlling mechanism of oil recovery in naturally fractured reservoirs. The efficiency of this mechanism is controlled by block-to-block interactions through capillary continuity and/or reinfiltration processes. In this study, at first, several free-fall gravity drainage experiments were conducted on a well-designed three-block apparatus and the role of tilt angle, spacers’ permeability, wettability and effective contact area (representing a different status of the block-to-block interactions between matrix blocks) on the recovery efficiency were investigated. Then, an experimental-based numerical model of free-fall gravity drainage process was developed,... 

    Effect of gas impurity on the convective dissolution of CO2 in porous media

    , Article Energy ; Volume 199 , May , 2020 Mahmoodpour, S ; Amooie, M. A ; Rostami, B ; Bahrami, F ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Growing needs for energy and the essential role of fossil fuels in energy market require attempts such as carbon dioxide (CO2) sequestration in saline aquifers to stabilize and mitigate atmospheric carbon concentrations. The possibility of co-injection of impurities along with CO2 allows for the direct disposal of flue gas and hence a significant reduction in the cost of CO2 sequestration projects by eliminating the separation process. In this study, the results of series of novel experiments in a high-pressure visual porous cell are reported, which allow for visually and quantitatively examining the dynamics of convective dissolution in brine-saturated porous media in the presence of an... 

    Experimental and modelling study of gravity drainage in a three-block system

    , Article Transport in Porous Media ; Volume 136, Issue 2 , 2021 , Pages 471-494 ; 01693913 (ISSN) Erfani, H ; Karimi Malekabadi, A ; Ghazanfari, M. H ; Rostami, B ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    Gravity drainage is known as the controlling mechanism of oil recovery in naturally fractured reservoirs. The efficiency of this mechanism is controlled by block-to-block interactions through capillary continuity and/or reinfiltration processes. In this study, at first, several free-fall gravity drainage experiments were conducted on a well-designed three-block apparatus and the role of tilt angle, spacers’ permeability, wettability and effective contact area (representing a different status of the block-to-block interactions between matrix blocks) on the recovery efficiency were investigated. Then, an experimental-based numerical model of free-fall gravity drainage process was developed,... 

    Application of the Maxwell-Stefan theory in modeling gas diffusion experiments into isolated oil droplets by water

    , Article Physics of Fluids ; Volume 34, Issue 11 , 2022 ; 10706631 (ISSN) Mirazimi, S ; Rostami, B ; Ghazanfari, M. H ; Khosravi, M ; Sharif University of Technology
    American Institute of Physics Inc  2022
    Abstract
    We have used the Maxwell-Stefan diffusion theory to model the mass transfer between tertiary-injected gas and residual oil blocked by water, in order to predict the time required for the rupture of the water barrier due to oil swelling. We have also designed and conducted a set of visualization micromodel experiments on various pure and multicomponent oil-gas systems to measure the water rupture time in tertiary gas injection processes. The experimental results show that the initial pressure and dimensions of the system, the oil and gas composition, and the gas solubility in water control the oil swelling process. The experimentally measured rupture times are then employed to evaluate the... 

    The role of water film on dead-end pore walls in the enhancement of mass transfer between shielded oil and gas

    , Article 79th EAGE Conference and Exhibition 2017: Energy, Technology, Sustainability - Time to Open a New Chapter, 12 June 2017 through 15 June 2017 ; 2017 ; 9789462822177 (ISBN) Mirazimi, S ; Rostami, B ; Ghazanfari, M. H ; Khosravi, M ; Saudi Aramco; Shell; Total ; Sharif University of Technology
    European Association of Geoscientists and Engineers, EAGE  2017
    Abstract
    Water shielding happens in water-wet reservoirs after waterflooding, where water fills the throats of oil-bearing dead-end pores and prevents tertiary injected gas from direct contact with oil; however, diffusion takes place between gas and oil via dissolution of components in water, which causes the oil to gradually swell until it completely pushes away the water from the throat. None of the previous experimental and numerical studies on the water-shielded oil recovery from a single dead-end pore have considered the presence of the thin water film on the surface of water-wet rocks, whereas it considerably enhances the gas-oil mass transfer rate by extending the contact area between the oil...