Loading...
Search for: salarieh--h
0.007 seconds
Total 193 records

    Sliding mode control of electromagnetic system based on fuzzy clustering estimation (an experimental study)

    , Article Proceedings of the 7th Biennial Conference on Engineering Systems Design and Analysis ; Volume 1 , 2004 , Pages 843-850 ; ISBN: 0791841731 ; ISBN: 9780791841730 Alasti, A ; Salarieh, H ; Shabani, R ; Sharif University of Technology
    Abstract
    Using the combination of fuzzy clustering estimation and sliding mode control, a technique for controlling the magnetic levitation (ML) systems is introduced. This technique is applied to an experimental setup of an ML system for investigating the method derived. The system considered, is a symmetric rotor supported by a cantilever load cell beam and excited by only one electromagnet of a 4-pole magnetic bearing setup. After demonstrating the experimental setup instruction and the specifications of its parts, the clustering, and the sliding mode control methods are explained briefly, then the quality of implementing the techniques to the setup is described step by step. Finally, the results... 

    Design, modeling and optimization of a novel two DOF polymeric electro-thermal micro-actuator

    , Article Applied Mechanics and Materials ; Vol. 307 , 2013 , pp. 112-116 ; ISSN: 16609336 ; ISBN: 9783037856598 Sheikhbahaie, R ; Alasty, A ; Salarieh, H ; Sharif University of Technology
    Abstract
    In this paper, design, simulation and optimization of a novel electrothermally-activated polymeric microactuator capable of generating combination of bidirectional lateral and rotational motions are presented. The composite structure of this actuator is consisted of a symmetric meandered shape silicon skeleton, a SU8 thermal expandable polymer and a thin film chrome layer heater. This actuator is controlled by applying appropriate voltages on its four terminals. With the purpose of dimension optimization, a numerical parametric study is executed. The modeled actuator which is 1560 ?m long, 156 ?m wide and 30 ?m thick, demonstrates a remarkable lateral displacement of 23 ?m at power... 

    Controlling chaos in tapping mode atomic force microscopes using improved minimum entropy control

    , Article Applied Mathematical Modelling ; Vol. 37, Issue 3 , 2013 , pp. 1599-1606 ; ISSN: 0307904X Sadeghpour, M ; Salarieh, H ; Alasty, A ; Sharif University of Technology
    Abstract
    Minimum entropy control technique, an approach for controlling chaos without using the dynamical model of the system, can be improved by being combined with a nature-based optimization technique. In this paper, an ACO-based optimization algorithm is employed to minimize the entropy function of the chaotic system. The feedback gain of a delayed feedback controller is adjusted in the ACO algorithm. The effectiveness of the idea is investigated on suppressing chaos in the tapping-mode atomic force microscope equations. Results show a good performance. The PSO-based version of the minimum entropy control technique is also used to control the chaotic behavior of the AFM, and corresponding results... 

    Minimum entropy control of chaos via online particle swarm optimization method

    , Article Applied Mathematical Modelling ; Vol. 36, Issue. 8 , 2012 , pp. 3931-3940 ; ISSN: 0307904X Sadeghpour, M ; Salarieh, H ; Alasty, A ; Sharif University of Technology
    Abstract
    One of the recently developed approaches for control of chaos is the minimum entropy (ME) control technique. In this method an entropy function based on the Shannon definition, is defined for a chaotic system. The control action is designed such that the entropy as a cost function is minimized which results in more regular pattern of motion for the system trajectories. In this paper an online optimization technique using particle swarm optimization (PSO) method is developed to calculate the control action based on ME strategy. The method is examined on some standard chaotic maps with error feedback and delayed feedback forms. Considering the fact that the optimization is online, simulation... 

    Stability analysis of a new class of MEMS gyroscopes with parametric resonance

    , Article Acta Mechanica ; Vol. 223, Issue 6 , 2012 , pp. 1169-1185 ; ISSN: 00015970 Pakniyat, A ; Salarieh, H ; Alasty, A ; Sharif University of Technology
    Abstract
    In this paper, a parametrically resonated MEMS gyroscope is considered, and the effect of its parameters on the system stability is studied. Unlike the general case of MEMS gyroscopes with harmonic excitation, in this new class of gyroscopes with parametric excitation, the origin is one stationary point of the system. The study starts with the stability analysis of the origin, and then it goes on to analyze the effect of each parameter on the stability of periodic orbits. Stabilities are studied by means of Floquet theory. As the results indicate, presence of a non-trivial response for the system is closely interconnected to the stabilities (and instabilities) of the system. It is... 

    Stabilizing periodic orbits of fractional order chaotic systems via linear feedback theory

    , Article Applied Mathematical Modelling ; Vol. 36, Issue 3 , 2012 , pp. 863-877 ; ISSN: 0307904X Rahim,i M. A ; Salarieh, H ; Alasty, A ; Sharif University of Technology
    Abstract
    In this paper stabilizing unstable periodic orbits (UPO) in a chaotic fractional order system is studied. Firstly, a technique for finding unstable periodic orbits in chaotic fractional order systems is stated. Then by applying this technique to the fractional van der Pol and fractional Duffing systems as two demonstrative examples, their unstable periodic orbits are found. After that, a method is presented for stabilization of the discovered UPOs based on the theories of stability of linear integer order and fractional order systems. Finally, based on the proposed idea a linear feedback controller is applied to the systems and simulations are done for demonstration of controller performance... 

    Stabilizing periodic orbits of the fractional order chaotic van der pol system

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Vol. 8, Issue PARTS A AND B , 2010 , pp. 175-183 ; ISBN: 9780791844458 Rahimi, M. A ; Salarieh, H ; Alasty, A ; Sharif University of Technology
    Abstract
    In tins paper, stabilizing the unstable periodic orbits (UPO) in a chaotic fractional order system called Van der Pol is studied. Firstly, a technique for finding unstable periodic orbit in chaotic fractional order systems is stated. Then by applying tins technique to the van der Pol system, unstable periodic orbit of system is found. After that, a method is presented for stabilization of the discovered UPO based on theories stability of the linear integer order and fractional order systems. Finally, a linear feedback controller was applied to the system and simulation is done for demonstration of controller performance  

    Comment on "A micro scale Timoshenko beam model based on strain gradient elasticity theory

    , Article European Journal of Mechanics, A/Solids ; 2014 ; ISSN: 09977538 Nojoumian, M. A ; Salarieh, H ; Sharif University of Technology
    Abstract
    A micro scale Timoshenko beam was modeled with strain gradient theory in "A micro scale Timoshenko beam model based on strain gradient elasticity theory" by Wang et al., European Journal of Mechanics - A/Solids, vol. 29, pp. 591-599, 7//2010. Looking at the modeling of the beam, a mistake in deriving the effect of classical moment has occurred. The classical boundary conditions of a Timoshenko beam could not be derived going backward from the strain gradient Timoshenko beam theory which has been presented in aforementioned paper. In this comment, the contradiction has been shown and the correct form of the boundary conditions and final equations has been derived  

    Analysis of large amplitude free vibrations of clamped tapered beams on a nonlinear elastic foundation

    , Article Applied Mathematical Modelling ; Volume 38, Issue 3 , 1 February , 2014 , Pages 1176-1186 ; ISSN: 0307904X Baghani, M ; Mazaheri, H ; Salarieh, H ; Sharif University of Technology
    Abstract
    The purpose of this paper is to present efficient and accurate analytical expressions for large amplitude free vibration analysis of single and double tapered beams on elastic foundation. Geometric nonlinearity is considered using the condition of inextensibility of neutral axis. Moreover, the elastic foundation consists of a linear and cubic nonlinear parts together with a shearing layer. The nonlinear governing equation is solved by employing the variational iteration method (VIM). This study shows that the second-order approximation of the VIM leads to highly accurate solutions which are valid for a wide range of vibration amplitudes. The effects of different parameters on the nonlinear... 

    Design of a fault tolerated intelligent cntrol system for a nuclear reactor power control: Using extended Kalman filter

    , Article Journal of Process Control ; Vol. 24, issue. 7 , 2014 , pp. 1076-1084 ; ISSN: 09591524 Hatami, E ; Salarieh, H ; Vosoughi, N ; Sharif University of Technology
    Abstract
    In this paper an approach based on system identification is used for fault detection in a nuclear reactor. A continuous-time Extended Kalman Filter (EKF) is presented, which allows the parameters of the nonlinear system to be estimated. Also a fault tolerant control system is designed for the nuclear reactor during power changes operation. The proposed controller is an adaptive critic-based neuro-fuzzy controller. Performance of the controller in terms of transient response and robustness against failures is very good and considerable  

    Enhancing tilt range of electrostatic torsional micromirrors using robust adaptive critic-based neurofuzzy control

    , Article ISA Transactions ; Vol. 53, issue. 5 , Sep , 2014 , p. 1592-1602 ; ISSN: 00190578 Malmir, H ; Salarieh, H ; Sharif University of Technology
    Abstract
    Electrostatic torsional micromirrors, as instances of Micro Electro Mechanical Systems (MEMS), have many optical network applications; such as optical wavelength-selective switches, optical cross-connects, etc. For all these applications, the micromirror needs to have minimal overshoot and settling time in order to minimize the time between two successive switching operations. Moreover, the controllability and stability of a torsional micromirror are major challenges due to high nonlinearities in its dynamic characteristics. In this paper, a robust adaptive critic-based neurofuzzy controller is proposed for electrostatic torsional micromirrors, which can improve the performance of the mirror... 

    Optimal tracking control of an underactuated container ship based on direct Gauss Pseudospectral Method

    , Article Scientia Iranica ; Vol. 21, issue. 6 , 2014 Ghorbani, M. T ; Salarieh, H ; Sharif University of Technology
    Abstract
    In this paper, the problem of optimal tracking control for a container ship is addressed. The multi-input-multi-output nonlinear model of the S175 container ship is well established in the literature and represents a challenging problem for control design, where the design requirement is to follow a commanded maneuver at a desired speed. To satisfy the constraints on the states and the control inputs of the vessel nonlinear dynamics and minimize the heading error, a nonlinear optimal controller is formed. To solve the resulted nonlinear constrained optimal control problem, the Gauss Pseudospectral Method (GPM) is used to transcribe the optimal control problem into a Nonlinear Programming... 

    Optimal robust control of drug delivery in cancer chemotherapy: A comparison between three control approaches

    , Article Computer Methods and Programs in Biomedicine ; Volume 112, Issue 1 , 2013 , Pages 69-83 ; 01692607 (ISSN) Moradi, H ; Vossoughi, G ; Salarieh, H ; Sharif University of Technology
    2013
    Abstract
    During the drug delivery process in chemotherapy, both of the cancer cells and normal healthy cells may be killed. In this paper, three mathematical cell-kill models including log-kill hypothesis, Norton-Simon hypothesis and Emax hypothesis are considered. Three control approaches including optimal linear regulation, nonlinear optimal control based on variation of extremals and H∞-robust control based on μ-synthesis are developed. An appropriate cost function is defined such that the amount of required drug is minimized while the tumor volume is reduced. For the first time, performance of the system is investigated and compared for three control strategies; applied on three nonlinear models... 

    Observer-based vibration control of non-classical microcantilevers using extended Kalman filters

    , Article Applied Mathematical Modelling ; January , 2015 ; 0307904X (ISSN) Vatankhah, R ; Karami, F ; Salarieh, H ; Sharif University of Technology
    Elsevier Inc  2015
    Abstract
    In non-classical micro-beams, the strain energy of the system is determined by the non-classical continuum mechanics. In this study, we consider a closed-loop control methodology for suppressing the vibration of non-classical microscale Euler-Bernoulli beams with nonlinear electrostatic actuation. The non-dimensional form of the governing nonlinear partial differential equation of the system is introduced and converted into a set of ordinary differential equations using the Galerkin projection method. In addition, we prove the observability of the system and we design a state estimation system using the extended Kalman filter algorithm. The effectiveness and performance of the proposed... 

    Kinematic control of a new hyper-redundant manipulator with lockable joints

    , Article Scientia Iranica ; Volume 20, Issue 6 , 2013 , Pages 1742-1752 ; 10263098 (ISSN) Taherifar, A ; Salarieh, H ; Alasty, A ; Sharif University of Technology
    Sharif University of Technology  2013
    Abstract
    Kinematic control of a special hyper-redundant manipulator with lockable joints is studied. In this manipulator, the extra cables are replaced by a locking system to reduce the weight of the structure and the number of actuators. This manipulator has discrete and continuous variables due to its locking system. Therefore, a hybrid approach has been adopted in control. At first the forward kinematics and velocity kinematics of this manipulator are derived, and then a novel closed-loop control algorithm is presented. This algorithm consists of decision making, an inner loop controller, and kinematic calculation blocks. The decision making block is the logical part of the control scheme in which... 

    Intelligent control of chaos using linear feedback controller and neural network identifier

    , Article Communications in Nonlinear Science and Numerical Simulation ; Volume 17, Issue 12 , 2012 , Pages 4731-4739 ; 10075704 (ISSN) Sadeghpour, M ; Khodabakhsh, M ; Salarieh, H ; Sharif University of Technology
    2012
    Abstract
    A method for controlling chaos when the mathematical model of the system is unknown is presented in this paper. The controller is designed by the pole placement algorithm which provides a linear feedback control method. For calculating the feedback gain, a neural network is used for identification of the system from which the Jacobian of the system in its fixed point can be approximated. The weights of the neural network are adjusted online by the gradient descent algorithm in which the difference between the system output and the network output is considered as the error to be decreased. The method is applied on both discrete-time and continuous-time systems. For continuous-time systems,... 

    Design and implementation of an improved real-time tracking system for navigation surgery by fusion of optical and inertial tracking methods

    , Article Applied Mechanics and Materials ; Volume 186 , 2012 , Pages 273-279 ; 16609336 (ISSN) ; 9783037854440 (ISBN) Soroush, A ; Farahmand, F ; Salarieh, H ; Sharif University of Technology
    2012
    Abstract
    The fusion of the optical and inertial tracking systems seems an attractive solution to solve the shadowing problem of the optical tracking systems, and remove the time integration troubles of the inertial sensors. We developed a fusion algorithm for this purpose, based on the Kalman filter, and examined its efficacy to improve the position and orientation data, obtained by each individual system. Experimental results indicated that the proposed fusion algorithm could effectively estimate the 2 seconds missing data of the optical tracker  

    Minimum entropy control of chaos via online particle swarm optimization method

    , Article Applied Mathematical Modelling ; Volume 36, Issue 8 , 2012 , Pages 3931-3940 ; 0307904X (ISSN) Sadeghpour, M ; Salarieh, H ; Alasty, A ; Sharif University of Technology
    Elsevier  2012
    Abstract
    One of the recently developed approaches for control of chaos is the minimum entropy (ME) control technique. In this method an entropy function based on the Shannon definition, is defined for a chaotic system. The control action is designed such that the entropy as a cost function is minimized which results in more regular pattern of motion for the system trajectories. In this paper an online optimization technique using particle swarm optimization (PSO) method is developed to calculate the control action based on ME strategy. The method is examined on some standard chaotic maps with error feedback and delayed feedback forms. Considering the fact that the optimization is online, simulation... 

    Stability analysis of a new class of MEMS gyroscopes with parametric resonance

    , Article Acta Mechanica ; Volume 223, Issue 6 , 2012 , Pages 1169-1185 ; 00015970 (ISSN) Pakniyat, A ; Salarieh, H ; Alasty, A ; Sharif University of Technology
    2012
    Abstract
    In this paper, a parametrically resonated MEMS gyroscope is considered, and the effect of its parameters on the system stability is studied. Unlike the general case of MEMS gyroscopes with harmonic excitation, in this new class of gyroscopes with parametric excitation, the origin is one stationary point of the system. The study starts with the stability analysis of the origin, and then it goes on to analyze the effect of each parameter on the stability of periodic orbits. Stabilities are studied by means of Floquet theory. As the results indicate, presence of a non-trivial response for the system is closely interconnected to the stabilities (and instabilities) of the system. It is... 

    Analysis of nonlinear oscillations in spur gear pairs with approximated modelling of backlash nonlinearity

    , Article Mechanism and Machine Theory ; Volume 51 , 2012 , Pages 14-31 ; 0094114X (ISSN) Moradi, H ; Salarieh, H ; Sharif University of Technology
    2012
    Abstract
    Due to international competition and strict limitations of standards regarding the noise level, investigation of gear vibration is of great importance. In this paper, nonlinear oscillations of spur gear pairs including the backlash nonlinearity is studied. Dynamic system is described through the classical single degree of freedom (SDOF) model in terms of dynamic transmission error (DTE). Using multiple scale method, forced vibration responses of the gear system including primary, super-harmonic and sub-harmonic resonances are investigated. In each case, the jump phenomenon and stability analysis are studied. In addition, the effect of dynamic and manufacturing parameters of the gear system...