Loading...
Search for: salkhi-khasraghi--s
0.004 seconds

    Polymer/nanodiamond composites - a comprehensive review from synthesis and fabrication to properties and applications

    , Article Advances in Colloid and Interface Science ; Volume 269 , 2019 , Pages 122-151 ; 00018686 (ISSN) Karami, P ; Salkhi Khasraghi, S ; Hashemi, M ; Rabiei, S ; Shojaei, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Nanodiamond (ND)is an allotrope of carbon nanomaterials which exhibits many outstanding physical, mechanical, thermal, optical and biocompatibility characteristics. Meanwhile, ND particles possess unique spherical shape containing diamond-like structure at the core with graphitic carbon outer shell which intuitively contains many oxygen-containing functional groups at the outer surface. Such superior properties and unique structural morphology of NDs are essentially attractive to develop polymer composites with multifunctional properties. However, despite a long history from the discovery of NDs, which is dated back to the1960s, this nanoparticle has been less explored in the field of... 

    https://www.sciencedirect.com/science/article/abs/pii/S0032386122006103

    , Article Polymer ; Volume 255 , 2022 ; 00323861 (ISSN) Mohammadi, A ; Shojaei, A ; Salkhi Khasraghi, S ; Karimzad Ghavidel, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Present work illustrated that the performance of ultrafine silica (Si) particles was improved considerably by rational hybridization with nanodiamond (ND). For this, Si@ND hybrid particles synthesized by chemical hybridization were incorporated into styrene-butadiene rubber (SBR) up to 10 phr. Scanning electron microscopy revealed coarse flower-like clusters for Si@ND nanohybrids, while Si exhibited rigid agglomerates in SBR. Comparing with physical hybrid (Si&ND) and single Si particles, it was revealed that chemical hybrids synergistically improved tensile properties, like 100% and 135% improvements in tensile strength and elongation at break, respectively. Dynamic mechanical analysis of...