Loading...
Search for: sarraf--m
0.005 seconds

    Microstructural, thermal, electrical, and magnetic properties of optimized Fe3O4–SiC hybrid nano filler reinforced aluminium matrix composite

    , Article Materials Chemistry and Physics ; Volume 258 , 2021 ; 02540584 (ISSN) Ashrafi, N ; Ariff, A. H. M ; Sarraf, M ; Sulaiman, S ; Hong, T. S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In the present study, the hybrid reinforcements (Fe3O4–SiC) novel composite has been successfully fabricated by powder metallurgy method. Adding Fe3O4 nanoparticles and SiC hybrid reinforcements in the aluminium matrix, improved the magnetic permeability of aluminium matrix composites as well as, thermal properties without mechanical degradation. In this study, the aim was to define the influence of SiC–Fe3O4 nanoparticles on microstructural, thermal, electrical, and magnetic properties of the composite. Based on obtained results, the highest density and hardness is 2.72 g/cm3 and 93 HV respectively. Adding (10–30 wt% SiC) into Al–15Fe3O4 slightly improved the magnetic saturation from... 

    Magnetic, Electrical, and physical properties evolution in fe3o4 nanofiller reinforced aluminium matrix composite produced by powder metallurgy method

    , Article Materials ; Volume 15, Issue 12 , 2022 ; 19961944 (ISSN) Ashrafi, N ; Ariff, A. H. M ; Jung, D.-W ; Sarraf, M ; Foroughi, J ; Sulaiman, S ; Hong, T. S ; Sharif University of Technology
    MDPI  2022
    Abstract
    An investigation into the addition of different weight percentages of Fe3O4 nanoparticles to find the optimum wt.% and its effect on the microstructure, thermal, magnetic, and electrical properties of aluminum matrix composite was conducted using the powder metallurgy method. The purpose of this research was to develop magnetic properties in aluminum. Based on the obtained results, the value of density, hardness, and saturation magnetization (Ms) from 2.33 g/cm3, 43 HV and 2.49 emu/g for Al-10 Fe3O4 reached a maximum value of 3.29 g/cm3, 47 HV and 13.06 emu/g for the Al-35 Fe3O4 which showed an improvement of 41.2%, 9.3%, and 424.5%, respectively. The maximum and minimum coercivity (Hc) was... 

    Polyethylene glycol-coated porous magnetic nanoparticles for targeted delivery of chemotherapeutics under magnetic hyperthermia condition

    , Article International Journal of Hyperthermia ; 2018 ; 02656736 (ISSN) Dabbagh, A ; Hedayatnasab, Z ; Karimian, H ; Sarraf, M ; Yeong, C. H ; Madaah Hosseini, H. R ; Abu Kasim, N. H ; Wong, T. W ; Rahman, N. A ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    Purpose: Although magnetite nanoparticles (MNPs) are promising agents for hyperthermia therapy, insufficient drug encapsulation efficacies inhibit their application as nanocarriers in the targeted drug delivery systems. In this study, porous magnetite nanoparticles (PMNPs) were synthesized and coated with a thermosensitive polymeric shell to obtain a synergistic effect of hyperthermia and chemotherapy. Materials and methods: PMNPs were produced using cetyltrimethyl ammonium bromide template and then coated by a polyethylene glycol layer with molecular weight of 1500 Da (PEG1500) and phase transition temperature of 48 ± 2 °C to endow a thermosensitive behavior. The profile of drug release... 

    Synergistic enhancement of photocatalytic antibacterial effects in high-strength aluminum/TiO2 nanoarchitectures

    , Article Ceramics International ; Volume 46, Issue 15 , October , 2020 , Pages 24267-24280 Mesbah, M ; Sarraf, M ; Dabbagh, A ; Nasiri Tabrizi, B ; Paria, S ; Banihashemian, S. M ; Bushroa, A. R ; Faraji, G ; Tsuzuki, T ; Madaah Hosseini, H. R ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Unlike gold and silver, aluminum shows a localized surface plasmon resonance (LSPR) over a wide spectral range from ultraviolet (UV) to the visible region. Herein, we demonstrate a new process to optically couple TiO2 nanotubes (NTs) with a high-strength aluminum substrate, to achieve a synergistic enhancement of photocatalytic antibacterial effects through controlled LSPR of aluminum. The high-strength aluminum substrate was produced by tubular channel angular pressing (TCAP). Their LSPR was tailored through the formation of superficial nano-concave arrays (NCAs) with desired concave diameters. A layer of aligned TiO2 NTs was fabricated on the surface of aluminum nano-concave arrays (Al... 

    Effect of zirconia nanotube coating on the hydrophilicity and mechanochemical behavior of zirconium for biomedical applications

    , Article Surfaces and Interfaces ; Volume 28 , 2022 ; 24680230 (ISSN) Zal Nezhad, E ; Sarraf, M ; Musharavati, F ; Jaber, F ; Wang, J. I ; Hosseini, H. R. M ; Bae, S ; Chowdhury, M ; So, H ; Sukiman, N. L ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Zirconium has attracted considerable attention in the biomedical field owing to its biocompatibility and desirable tribological and mechanical properties. In this study, we anodized pure zirconium in an ammonium fluoride and ethylene glycol electrolyte, which produced a coating of ZrO2 nanotubes (NTs). The ZrO2 coated samples were annealed at different temperatures, and the morphology and structure of the coated substrates were studied using XPS, SEM, TEM, EDS, and SAED. The micro/nanomechanical properties and corrosion resistance of the samples were evaluated. Wear tests performed on bare and coated substrates revealed that the coated samples annealed at 400 °C had a significantly lower...